Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature: dynamic shared mem moe_align_block_size_kernel #3376

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 29 additions & 13 deletions csrc/moe_align_block_size_kernels.cu
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,17 @@
#include "cuda_compat.h"
#include "dispatch_utils.h"

const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))

namespace vllm {

namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, int32_t col) {
// don't worry about overflow because num_experts is relatively small
return row * total_col + col;
}
}

template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
Expand All @@ -21,10 +28,14 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];

extern __shared__ int32_t shared_mem[];

int32_t* tokens_cnts = shared_mem; // 2d tensor with shape (num_experts + 1, num_experts)
int32_t* cumsum = shared_mem + (num_experts + 1) * num_experts; // 1d tensor with shape (num_experts + 1)

for (int i = 0; i < num_experts; ++i) {
tokens_cnts[threadIdx.x + 1][i] = 0;
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}

/**
Expand All @@ -33,15 +44,15 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
* to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}

__syncthreads();

// For each expert we accumulate the token counts from the different threads.
tokens_cnts[0][threadIdx.x] = 0;
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
tokens_cnts[index(num_experts, i, threadIdx.x)] += tokens_cnts[index(num_experts, i-1, threadIdx.x)];
}

__syncthreads();
Expand All @@ -50,7 +61,7 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)], block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
Expand Down Expand Up @@ -78,9 +89,9 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
* stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard.
*/
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
int32_t rank_post_pad = tokens_cnts[index(num_experts, threadIdx.x, expert_id)] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id];
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
}
Expand All @@ -93,11 +104,16 @@ void moe_align_block_size(
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
// calc needed amount of shared mem for `tokens_cnts` and `cumsum` tensors
const int32_t shared_mem = ((num_experts + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);

// set dynamic shared mem
auto kernel = vllm::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem));
kernel<<<1, num_experts, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
Expand Down
Loading