forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[pull] master from ggerganov:master #36
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
* server: add mistral chat template * server: fix typo * server: rename template mistral to llama2 * server: format_llama2: remove BOS * server: validate "--chat-template" argument * server: clean up using_chatml variable Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> --------- Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q8_0_q8_0 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q4_0_q8_0 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q4_1_q8_1 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: update unit tests for the new vec_dot interface * llama.cpp: add MATMUL_INT8 capability to system_info
* server: allow to specify tokens as strings in logit_bias * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* common: use enums for sampler types * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * minor : spaces --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan: refactor guess_matmul_pipeline for vendor Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor conditionals. Signed-off-by: Sergio Lopez <slp@redhat.com> * vulkan: only use M-sized matmul on Apple GPUs L-sized and S-sized matmuls are broken on Apple GPUs, force using M-size with this vendor. Signed-off-by: Sergio Lopez <slp@redhat.com> --------- Signed-off-by: Sergio Lopez <slp@redhat.com>
Flake lock file updates: • Updated input 'nixpkgs': 'github:NixOS/nixpkgs/b8b232ae7b8b144397fdb12d20f592e5e7c1a64d' (2024-01-31) → 'github:NixOS/nixpkgs/f8e2ebd66d097614d51a56a755450d4ae1632df1' (2024-02-07)
* BERT model graph construction (build_bert) * WordPiece tokenizer (llm_tokenize_wpm) * Add flag for non-causal attention models * Allow for models that only output embeddings * Support conversion of BERT models to GGUF * Based on prior work by @xyzhang626 and @skeskinen --------- Co-authored-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
See Commits and Changes for more details.
Created by pull[bot]
Can you help keep this open source service alive? 💖 Please sponsor : )