Skip to content

Commit

Permalink
docs: use displaystyle in fractions with summation symbol
Browse files Browse the repository at this point in the history
  • Loading branch information
Planeshifter committed Mar 9, 2023
1 parent 3cba0e5 commit 1cd5aea
Show file tree
Hide file tree
Showing 3 changed files with 9 additions and 9 deletions.
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/incr/kurtosis/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,13 +60,13 @@ where `m_4` is the sample fourth central moment and `m_2` is the sample second c

The previous equation is, however, a biased estimator of the population excess kurtosis. An alternative estimator which is unbiased under normality is

<!-- <equation class="equation" label="eq:corrected_sample_excess_kurtosis" align="center" raw="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" alt="Equation for the corrected sample excess kurtosis."> -->
<!-- <equation class="equation" label="eq:corrected_sample_excess_kurtosis" align="center" raw="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" alt="Equation for the corrected sample excess kurtosis."> -->

```math
G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}
G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}
```

<!-- <div class="equation" align="center" data-raw-text="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" data-equation="eq:corrected_sample_excess_kurtosis">
<!-- <div class="equation" align="center" data-raw-text="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" data-equation="eq:corrected_sample_excess_kurtosis">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/kurtosis/docs/img/equation_corrected_sample_excess_kurtosis.svg" alt="Equation for the corrected sample excess kurtosis.">
<br>
</div> -->
Expand Down
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/incr/mhmean/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,13 @@ limitations under the License.

The [harmonic mean][harmonic-mean] of positive real numbers `x_0, x_1, ..., x_{n-1}` is defined as

<!-- <equation class="equation" label="eq:harmonic_mean" align="center" raw="\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" alt="Equation for the harmonic mean."> -->
<!-- <equation class="equation" label="eq:harmonic_mean" align="center" raw="\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" alt="Equation for the harmonic mean."> -->

```math
\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}
\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}
```

<!-- <div class="equation" align="center" data-raw-text="\begin{align}H &amp;= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &amp;= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &amp;= \biggl( \frac{\displaystyle \sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" data-equation="eq:harmonic_mean">
<!-- <div class="equation" align="center" data-raw-text="\begin{align}H &amp;= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &amp;= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &amp;= \biggl( \frac{\displaystyle \sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" data-equation="eq:harmonic_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@0a561712608b99b59d9243f7d478a2e2a019a130/lib/node_modules/@stdlib/stats/incr/mhmean/docs/img/equation_harmonic_mean.svg" alt="Equation for the harmonic mean.">
<br>
</div> -->
Expand Down
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/iter/cuhmean/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,13 @@ limitations under the License.

The [harmonic mean][harmonic-mean] of positive real numbers `x_0, x_1, ..., x_{n-1}` is defined as

<!-- <equation class="equation" label="eq:harmonic_mean" align="center" raw="\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" alt="Equation for the harmonic mean."> -->
<!-- <equation class="equation" label="eq:harmonic_mean" align="center" raw="\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" alt="Equation for the harmonic mean."> -->

```math
\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}
\begin{align}H &= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}
```

<!-- <div class="equation" align="center" data-raw-text="\begin{align}H &amp;= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &amp;= \frac{n}{\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &amp;= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" data-equation="eq:harmonic_mean">
<!-- <div class="equation" align="center" data-raw-text="\begin{align}H &amp;= \frac{n}{\frac{1}{x_0} + \frac{1}{x_1} + \cdots + \frac{1}{x_{n-1}}} \\ &amp;= \frac{n}{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}} \\ &amp;= \biggl( \frac{\displaystyle\sum_{i=0}^{n-1} \frac{1}{x_i}}{n} \biggr)^{-1}\end{align}" data-equation="eq:harmonic_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@c00986cca2dbfac62b50df74d56662f485b6d4e5/lib/node_modules/@stdlib/stats/iter/cuhmean/docs/img/equation_harmonic_mean.svg" alt="Equation for the harmonic mean.">
<br>
</div> -->
Expand Down

0 comments on commit 1cd5aea

Please sign in to comment.