Skip to content

Commit

Permalink
docs: use displaystyle in fractions with summation symbol
Browse files Browse the repository at this point in the history
  • Loading branch information
Planeshifter committed Mar 9, 2023
1 parent 571d2e8 commit 3cba0e5
Show file tree
Hide file tree
Showing 3 changed files with 9 additions and 9 deletions.
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/incr/kurtosis/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,13 @@ Using a univariate normal distribution as the standard of comparison, the [exces

For a sample of `n` values, the [sample excess kurtosis][sample-excess-kurtosis] is

<!-- <equation class="equation" label="eq:sample_excess_kurtosis" align="center" raw="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" alt="Equation for the sample excess kurtosis."> -->
<!-- <equation class="equation" label="eq:sample_excess_kurtosis" align="center" raw="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" alt="Equation for the sample excess kurtosis."> -->

```math
g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}
g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}
```

<!-- <div class="equation" align="center" data-raw-text="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" data-equation="eq:sample_excess_kurtosis">
<!-- <div class="equation" align="center" data-raw-text="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" data-equation="eq:sample_excess_kurtosis">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/kurtosis/docs/img/equation_sample_excess_kurtosis.svg" alt="Equation for the sample excess kurtosis.">
<br>
</div> -->
Expand Down
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/incr/mpcorr/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,13 @@ where the numerator is the [covariance][covariance] and the denominator is the p

For a sample of size `W`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as

<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->

```math
r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
```

<!-- <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<!-- <div class="equation" align="center" data-raw-text="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mpcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
<br>
</div> -->
Expand Down
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/incr/mpcorr2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,13 @@ where the numerator is the [covariance][covariance] and the denominator is the p

For a sample of size `W`, the sample [Pearson product-moment correlation coefficient][pearson-correlation] is defined as

<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->

```math
r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
```

<!-- <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<!-- <div class="equation" align="center" data-raw-text="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \displaystyle\sqrt{\displaystyle\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@e6bc812ab63010afd0f25418c0c6954c3a680357/lib/node_modules/@stdlib/stats/incr/mpcorr2/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
<br>
</div> -->
Expand Down

0 comments on commit 3cba0e5

Please sign in to comment.