Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(eda): change dtype 'string' to 'object' #377

Merged
merged 1 commit into from
Sep 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion dataprep/eda/create_report/formatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,14 @@
from ..distribution.compute.overview import calc_stats
from ..distribution.compute.univariate import cont_comps, nom_comps
from ..distribution.render import format_cat_stats, format_num_stats, format_ov_stats
from ..dtypes import CATEGORICAL_DTYPES, Continuous, Nominal, detect_dtype, is_dtype
from ..dtypes import (
CATEGORICAL_DTYPES,
Continuous,
Nominal,
detect_dtype,
is_dtype,
string_dtype_to_object,
)
from ..intermediate import Intermediate
from ..missing import render_missing
from ..missing.compute.nullivariate import compute_missing_nullivariate
Expand Down Expand Up @@ -51,6 +58,7 @@ def format_report(
# pylint: disable=too-many-locals,too-many-statements
with ProgressBar(minimum=1, disable=not progress):
df = to_dask(df)
df = string_dtype_to_object(df)
if mode == "basic":
comps = format_basic(df)
# elif mode == "full":
Expand Down
4 changes: 2 additions & 2 deletions dataprep/eda/distribution/compute/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import dask.dataframe as dd
import pandas as pd

from ...dtypes import DTypeDef
from ...dtypes import DTypeDef, string_dtype_to_object
from ...intermediate import Intermediate
from ...utils import to_dask
from .bivariate import compute_bivariate
Expand Down Expand Up @@ -93,9 +93,9 @@ def compute(
dtype = {"a": Continuous(), "b": "nominal"}
or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous()
""" # pylint: disable=too-many-locals

df = to_dask(df)
df.columns = df.columns.astype(str)
df = string_dtype_to_object(df)

if not any((x, y, z)):
return compute_overview(df, bins, ngroups, largest, timeunit, dtype)
Expand Down
14 changes: 14 additions & 0 deletions dataprep/eda/dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,9 @@
CATEGORICAL_PANDAS_DTYPES = [pd.CategoricalDtype, pd.PeriodDtype]
CATEGORICAL_DTYPES = CATEGORICAL_NUMPY_DTYPES + CATEGORICAL_PANDAS_DTYPES

STRING_PANDAS_DTYPES = [pd.StringDtype]
STRING_DTYPES = STRING_PANDAS_DTYPES

NUMERICAL_NUMPY_DTYPES = [np.number]
NUMERICAL_DTYPES = NUMERICAL_NUMPY_DTYPES

Expand Down Expand Up @@ -256,6 +259,17 @@ def is_pandas_categorical(dtype: Any) -> bool:
return any(isinstance(dtype, c) for c in CATEGORICAL_PANDAS_DTYPES)


def string_dtype_to_object(df: dd.DataFrame) -> dd.DataFrame:
"""
Convert string dtype to object dtype
"""
for col in df.columns:
if any(isinstance(df[col].dtype, c) for c in STRING_DTYPES):
df[col] = df[col].astype(object)

return df


def drop_null(
var: Union[dd.Series, pd.DataFrame, dd.DataFrame]
) -> Union[pd.Series, dd.Series, pd.DataFrame, dd.DataFrame]:
Expand Down
3 changes: 2 additions & 1 deletion dataprep/eda/missing/compute/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from warnings import catch_warnings, filterwarnings

from ...data_array import DataArray, DataFrame
from ...dtypes import DTypeDef
from ...dtypes import DTypeDef, string_dtype_to_object
from ...intermediate import Intermediate
from .bivariate import compute_missing_bivariate
from .nullivariate import compute_missing_nullivariate
Expand Down Expand Up @@ -53,6 +53,7 @@ def compute_missing( # pylint: disable=too-many-arguments
>>> plot_missing(df, "HDI_for_year")
>>> plot_missing(df, "HDI_for_year", "population")
"""
df = string_dtype_to_object(df)
df = DataArray(df)

# pylint: disable=no-else-raise
Expand Down