forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-14267] [SQL] [PYSPARK] execute multiple Python UDFs within sin…
…gle batch ## What changes were proposed in this pull request? This PR support multiple Python UDFs within single batch, also improve the performance. ```python >>> from pyspark.sql.types import IntegerType >>> sqlContext.registerFunction("double", lambda x: x * 2, IntegerType()) >>> sqlContext.registerFunction("add", lambda x, y: x + y, IntegerType()) >>> sqlContext.sql("SELECT double(add(1, 2)), add(double(2), 1)").explain(True) == Parsed Logical Plan == 'Project [unresolvedalias('double('add(1, 2)), None),unresolvedalias('add('double(2), 1), None)] +- OneRowRelation$ == Analyzed Logical Plan == double(add(1, 2)): int, add(double(2), 1): int Project [double(add(1, 2))#14,add(double(2), 1)#15] +- Project [double(add(1, 2))#14,add(double(2), 1)#15] +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18] +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- OneRowRelation$ == Optimized Logical Plan == Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18] +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- OneRowRelation$ == Physical Plan == WholeStageCodegen : +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] : +- INPUT +- !BatchPythonEvaluation [add(pythonUDF1#17, 1)], [pythonUDF0#16,pythonUDF1#17,pythonUDF0#18] +- !BatchPythonEvaluation [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- Scan OneRowRelation[] ``` ## How was this patch tested? Added new tests. Using the following script to benchmark 1, 2 and 3 udfs, ``` df = sqlContext.range(1, 1 << 23, 1, 4) double = F.udf(lambda x: x * 2, LongType()) print df.select(double(df.id)).count() print df.select(double(df.id), double(df.id + 1)).count() print df.select(double(df.id), double(df.id + 1), double(df.id + 2)).count() ``` Here is the results: N | Before | After | speed up ---- |------------ | -------------|------ 1 | 22 s | 7 s | 3.1X 2 | 38 s | 13 s | 2.9X 3 | 58 s | 16 s | 3.6X This benchmark ran locally with 4 CPUs. For 3 UDFs, it launched 12 Python before before this patch, 4 process after this patch. After this patch, it will use less memory for multiple UDFs than before (less buffering). Author: Davies Liu <davies@databricks.com> Closes apache#12057 from davies/multi_udfs.
- Loading branch information
Showing
8 changed files
with
233 additions
and
101 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.