Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pre-declare some symbols to accomodate julia nightly #4580

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion experimental/GModule/src/Cohomology.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ using Oscar
import Oscar: action
import Oscar: induce
import Oscar: word
import Oscar: GAPWrap, pc_group, fp_group, direct_product, direct_sum, GAPGroup
import Oscar: GAPWrap, pc_group, fp_group, direct_product, direct_sum, GAPGroup, regular_gmodule, is_G_hom
import AbstractAlgebra: Group, Module, FPModule
import Base: parent

Expand Down
21 changes: 11 additions & 10 deletions experimental/GModule/src/GModule.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
function indecomposition end
function factor_set end
function regular_gmodule end
function is_G_hom end

include("Cohomology.jl")
include("Types.jl")
include("GaloisCohomology.jl")
Expand Down Expand Up @@ -830,7 +835,7 @@ Return `(R[G], f, g)`, where
- `g` is a bijective map between the elements of `G` and the
indices of the corresponding module generators.
"""
function regular_gmodule(G::Oscar.GAPGroup, R::Ring)
function Oscar.regular_gmodule(G::Oscar.GAPGroup, R::Ring)
M = free_module(R, Int(order(G)))
ge = collect(G)
ZG = gmodule(G, [hom(M, M, [M[findfirst(isequal(ge[i]*g), ge)] for i=1:length(ge)]) for g = gens(G)])
Expand All @@ -839,7 +844,7 @@ function regular_gmodule(G::Oscar.GAPGroup, R::Ring)
y->ge[Int(y)])
end

function regular_gmodule(::Type{FinGenAbGroup}, G::Oscar.GAPGroup, ::ZZRing)
function Oscar.regular_gmodule(::Type{FinGenAbGroup}, G::Oscar.GAPGroup, ::ZZRing)
M = free_abelian_group(order(Int, G))
ge = collect(G)
ZG = gmodule(G, [hom(M, M, [M[findfirst(isequal(ge[i]*g), ge)] for i=1:length(ge)]) for g = gens(G)])
Expand Down Expand Up @@ -1124,7 +1129,7 @@ module of the automorphism group over the character field.
If `mA` is given, it needs to map the automorphism group over the
character field into the the automorphisms of the base ring.
"""
function factor_set(C::GModule{<:Any, <:AbstractAlgebra.FPModule{AbsSimpleNumFieldElem}}, mA::Union{Map, Nothing} = nothing)
function Oscar.factor_set(C::GModule{<:Any, <:AbstractAlgebra.FPModule{AbsSimpleNumFieldElem}}, mA::Union{Map, Nothing} = nothing)
K = base_ring(C)
if mA === nothing
k, mkK = _character_field(C)
Expand Down Expand Up @@ -1498,7 +1503,7 @@ of pairs:
- a direct indecomposable summand
- a homomorphism (embedding) of the underlying free modules
"""
function indecomposition(C::GModule{<:Any, <:AbstractAlgebra.FPModule{<:FinFieldElem}})
function Oscar.indecomposition(C::GModule{<:Any, <:AbstractAlgebra.FPModule{<:FinFieldElem}})
G = Gap(C)
z = GAP.Globals.MTX.Indecomposition(G)
k = base_ring(C)
Expand Down Expand Up @@ -1543,7 +1548,7 @@ function ghom(C::GModule, D::GModule)
return gmodule(H, C.G, [hom(H, H, [preimage(mH, action(C, inv(g))*mH(h)*action(D, g)) for h = gens(H)]) for g = gens(C.G)]), mH
end

function is_G_hom(C::GModule, D::GModule, H::Map)
function Oscar.is_G_hom(C::GModule, D::GModule, H::Map)
return all([H(action(C, g, h)) == action(D, g, H(h)) for g = gens(C.G) for h = gens(C.M)])
end

Expand All @@ -1553,7 +1558,7 @@ A = abelian_group([3, 3])
C = gmodule(G, [hom(A, A, [A[1], A[1]+A[2]])])
is_consistent(C)

zg, ac = regular_gmodule(G, ZZ)
zg, ac = Oscar.regular_gmodule(G, ZZ)
zg = gmodule(FinGenAbGroup, zg)
H, mH = Oscar.GModuleFromGap.ghom(zg, C)
inj = hom(C.M, H.M, [preimage(mH, hom(zg.M, C.M, [ac(C)(g)(c) for g = gens(zg.M)])) for c = gens(C.M)])
Expand Down Expand Up @@ -1979,16 +1984,12 @@ function Oscar.simplify(C::GModule{<:Any, <:AbstractAlgebra.FPModule{ZZRingElem}
end

export extension_of_scalars
export factor_set
export ghom
export indecomposition
export irreducible_modules
export is_decomposable
export is_G_hom
export restriction_of_scalars
export trivial_gmodule
export natural_gmodule
export regular_gmodule
export gmodule_minimal_field
export gmodule_over

Expand Down
2 changes: 1 addition & 1 deletion experimental/GModule/src/GaloisCohomology.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
module GaloisCohomology_Mod
using Oscar
import Oscar: gmodule
import Oscar: gmodule, indecomposition, factor_set
import Oscar: GrpCoh
import Oscar.GrpCoh: CoChain, MultGrpElem, MultGrp, GModule, is_consistent,
Group
Expand Down
Loading