Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Visualizer show classification and segmentation #178

Merged
merged 11 commits into from
Apr 8, 2022
18 changes: 18 additions & 0 deletions anomalib/post_processing/visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,24 @@ def add_image(self, image: np.ndarray, title: str, color_map: Optional[str] = No
self.axis[index].imshow(image, color_map)
self.axis[index].title.set_text(title)

def add_text(self, image: np.ndarray, text: str, font: int = cv2.FONT_HERSHEY_PLAIN):
"""Puts text on an image.

Args:
image (np.ndarray): Input image.
text (str): Text to add.
font (Optional[int]): cv2 font type. Defaults to 0.

Returns:
np.ndarray: Image with text.
"""
image = image.copy()
font_size = image.shape[1] // 1024 + 1 # Text scale is calculated based on the reference size of 1024
(text_w, text_h), baseline = cv2.getTextSize(text, font, font_size, thickness=font_size // 2)
cv2.rectangle(image, (0, 0), (0 + text_w, 0 + text_h), (255, 255, 255), -1)
cv2.putText(image, text, (0, baseline // 2 + text_h), font, font_size, 0)
return image

def show(self):
"""Show image on a matplotlib figure."""
self.figure.show()
Expand Down
6 changes: 5 additions & 1 deletion anomalib/utils/callbacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,11 @@ def get_callbacks(config: Union[ListConfig, DictConfig]) -> List[Callback]:
raise ValueError(f"Normalization method not recognized: {config.model.normalization_method}")

if not config.project.log_images_to == []:
callbacks.append(VisualizerCallback(inputs_are_normalized=not config.model.normalization_method == "none"))
callbacks.append(
VisualizerCallback(
task=config.dataset.task, inputs_are_normalized=not config.model.normalization_method == "none"
)
)

if "optimization" in config.keys():
if config.optimization.nncf.apply:
Expand Down
21 changes: 15 additions & 6 deletions anomalib/utils/callbacks/visualizer_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,9 @@ class VisualizerCallback(Callback):
config.yaml file.
"""

def __init__(self, inputs_are_normalized: bool = True):
def __init__(self, task: str, inputs_are_normalized: bool = True):
"""Visualizer callback."""
self.task = task
self.inputs_are_normalized = inputs_are_normalized

def _add_images(
Expand Down Expand Up @@ -111,23 +112,31 @@ def on_test_batch_end(
normalize = True # raw anomaly maps. Still need to normalize
threshold = pl_module.pixel_metrics.F1.threshold

for (filename, image, true_mask, anomaly_map) in zip(
outputs["image_path"], outputs["image"], outputs["mask"], outputs["anomaly_maps"]
for i, (filename, image, anomaly_map) in enumerate(
zip(outputs["image_path"], outputs["image"], outputs["anomaly_maps"])
):
image = Denormalize()(image.cpu())
true_mask = true_mask.cpu().numpy()
anomaly_map = anomaly_map.cpu().numpy()

heat_map = superimpose_anomaly_map(anomaly_map, image, normalize=normalize)
pred_mask = compute_mask(anomaly_map, threshold)
vis_img = mark_boundaries(image, pred_mask, color=(1, 0, 0), mode="thick")

visualizer = Visualizer(num_rows=1, num_cols=5, figure_size=(12, 3))
visualizer.add_image(image=image, title="Image")
visualizer.add_image(image=true_mask, color_map="gray", title="Ground Truth")
visualizer.add_image(image=heat_map, title="Predicted Heat Map")
visualizer.add_image(image=pred_mask, color_map="gray", title="Predicted Mask")
visualizer.add_image(image=vis_img, title="Segmentation Result")

if self.task == "classification":
image_classified = visualizer.add_text(
image=image, text=f'Pred: {outputs["pred_scores"][i]:.3f} GT: {int(outputs["label"][i])}'
alexriedel1 marked this conversation as resolved.
Show resolved Hide resolved
)
visualizer.add_image(image=image_classified, title="Classified Image")

if self.task == "segmentation":
true_mask = outputs["mask"][i].cpu().numpy()
alexriedel1 marked this conversation as resolved.
Show resolved Hide resolved
visualizer.add_image(image=true_mask, color_map="gray", title="Ground Truth")

self._add_images(visualizer, pl_module, Path(filename))
visualizer.close()

Expand Down