Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[torch-mlir][sparse] add JIT test for block sparse SpMV #2955

Merged
merged 1 commit into from
Feb 27, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 26 additions & 10 deletions test/python/fx_importer/sparse_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,11 @@ def sparse_jit(f, *args, **kwargs):
module = export_and_import(f, *args, *kwargs)
run_pipeline_with_repro_report(
module,
"builtin.module(torch-backend-to-linalg-on-tensors-backend-pipeline)",
(
"builtin.module("
"func.func(torch-decompose-complex-ops),"
"torch-backend-to-linalg-on-tensors-backend-pipeline)"
),
"Lowering TorchFX IR -> Linalg IR",
enable_ir_printing=False,
)
Expand Down Expand Up @@ -200,13 +204,13 @@ def __init__(self):
def forward(self, x):
return x.sum()

net = SumNet()
dense_input = torch.ones(64, 64)
sparse_input = dense_input.to_sparse_csr()
m = export_and_import(SumNet(), sparse_input)
m = export_and_import(net, sparse_input)
print(m)

# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
net = SumNet()
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
print("torch.sparse =", res1)
Expand All @@ -222,6 +226,10 @@ def forward(self, x):
# CHECK: %[[R:.*]] = torch.aten.mv %[[A]], %[[B]] : !torch.vtensor<[10,10],f32,#[[$BSR]]>, !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
# CHECK: return %[[R]] : !torch.vtensor<[10],f32>
# CHECK: }
#
# CHECK: torch.sparse = tensor([55., 55., 55., 55., 55., 55., 55., 55., 55., 55.])
# CHECK: torch.mlir = [55. 55. 55. 55. 55. 55. 55. 55. 55. 55.]
#
def test_sparse_SpMV():
class SpMVNet(torch.nn.Module):
def __init__(self):
Expand All @@ -230,12 +238,19 @@ def __init__(self):
def forward(self, x, v):
return torch.mv(x, v)

dense_vector = torch.ones(10)
net = SpMVNet()
dense_vector = torch.arange(1, 11, dtype=torch.float32)
dense_input = torch.ones(10, 10)
sparse_input = dense_input.to_sparse_bsr(blocksize=(2, 2))
m = export_and_import(SpMVNet(), sparse_input, dense_vector)
m = export_and_import(net, sparse_input, dense_vector)
print(m)

# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input, dense_vector)
res2 = sparse_jit(net, sparse_input, dense_vector)
print("torch.sparse =", res1)
print("torch.mlir =", res2)


@run
# CHECK-LABEL: test_sparse_SpMM
Expand Down Expand Up @@ -264,15 +279,15 @@ def __init__(self):
def forward(self, x, y):
return torch.matmul(x, y)

net = MatMulNet()
dense_input = torch.ones(8, 8)
sparse_input = dense_input.to_sparse_coo()
m = export_and_import(MatMulNet(), sparse_input, dense_input)
m = export_and_import(net, sparse_input, dense_input)
print(m)

# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
# TODO: run with COO, right now only CSR works
sparse_input = dense_input.to_sparse_csr()
net = MatMulNet()
res1 = net(sparse_input, dense_input)
res2 = sparse_jit(net, sparse_input, dense_input)
print("torch.sparse")
Expand Down Expand Up @@ -311,6 +326,7 @@ def forward(self, x, y):
# ...
# CHECK: [-61. -62.]
# CHECK: [-63. -64.]{{\]\]}}
#
def test_sparse_eltwise():
class EltNet(torch.nn.Module):
def __init__(self):
Expand All @@ -319,18 +335,19 @@ def __init__(self):
def forward(self, x):
return -x

net = EltNet()
dense_input = torch.reshape(
torch.arange(1, 65, dtype=torch.float32), shape=(8, 4, 2)
)

# This yields a **batched** CSR.
sparse_input = dense_input.to_sparse_csr(dense_dim=0)
m = export_and_import(EltNet(), sparse_input)
m = export_and_import(net, sparse_input)
print(m)

# This yields a plain CSR with dense **sub**tensor
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
m = export_and_import(EltNet(), sparse_input)
m = export_and_import(net, sparse_input)
print(m)

# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
Expand All @@ -339,7 +356,6 @@ def forward(self, x):
# (1) since we do not propagate sparsity into elt-wise, MLIR returns dense result
# (2) for dense_dim=0, this will need a dense(batched) property
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
net = EltNet()
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
print("torch.sparse")
Expand Down
Loading