Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch Dialect] add fold pattern for aten.clone #2804

Merged
merged 2 commits into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -9101,6 +9101,7 @@ def Torch_AtenCloneOp : Torch_Op<"aten.clone", [
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
let hasFolder = 1;
}

def Torch_AtenLiftFreshCopyOp : Torch_Op<"aten.lift_fresh_copy", [
Expand Down
1 change: 0 additions & 1 deletion lib/Conversion/TorchToStablehlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1763,7 +1763,6 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
#define INSERT_UNARY_PATTERN(AtenOp, StablehloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryOp<AtenOp, StablehloOp>>(typeConverter, context)
INSERT_UNARY_PATTERN(AtenCloneOp, stablehlo::ConvertOp);
INSERT_UNARY_PATTERN(AtenNegOp, stablehlo::NegOp);
INSERT_UNARY_PATTERN(AtenLogicalNotOp, stablehlo::NotOp);
INSERT_UNARY_PATTERN(AtenBitwiseNotOp, stablehlo::NotOp);
Expand Down
13 changes: 13 additions & 0 deletions lib/Dialect/Torch/IR/TorchOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1658,6 +1658,19 @@ void AtenMaskedFillTensorOp::getCanonicalizationPatterns(
});
}

//===----------------------------------------------------------------------===//
// AtenCloneOp
//===----------------------------------------------------------------------===//

OpFoldResult AtenCloneOp::fold(FoldAdaptor adaptor) {
// note: memory_format would be ignored
if (llvm::dyn_cast<ValueTensorType>(getSelf().getType())) {
// self should have value semantics
return getSelf();
}
return {};
}

//===----------------------------------------------------------------------===//
// AtenSortIntOp
//===----------------------------------------------------------------------===//
Expand Down
1 change: 1 addition & 0 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -1020,6 +1020,7 @@
"BroadcastZeroRankInputStaticModule_basic",
"BucketizeTensorStaticFloatModule_basic",
"BucketizeTensorStaticModule_basic",
"CloneModule_basic",
"ChunkListUnpackUneven_Module_basic",
"ChunkListUnpack_Module_basic",
"ConstantBoolParameterModule_basic",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -592,7 +592,7 @@ def emit_with_mutating_variants(key, **kwargs):
emit("aten::one_hot : (Tensor, int) -> (Tensor)")
emit("aten::einsum : (str, Tensor[], int[]?) -> (Tensor)")
emit("aten::bucketize.Tensor : (Tensor, Tensor, bool, bool) -> (Tensor)")
emit("aten::clone : (Tensor, int?) -> (Tensor)")
emit("aten::clone : (Tensor, int?) -> (Tensor)", has_folder=True)
emit("aten::lift_fresh_copy : (Tensor) -> (Tensor)")
emit("aten::contiguous : (Tensor, int) -> (Tensor)")
emit_with_mutating_variants("aten::copy : (Tensor, Tensor, bool) -> (Tensor)")
Expand Down
20 changes: 20 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -4994,3 +4994,23 @@ def forward(self, x):
@register_test_case(module_factory=lambda: IscloseStaticModuleTrue())
def IscloseStaticModuleTrue_basic(module, tu: TestUtils):
module.forward(torch.ones(5, 5))


# ==============================================================================

class CloneModule(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
([5, 5], torch.float32, True),
])
def forward(self, x):
return torch.ops.aten.clone(x)

@register_test_case(module_factory=lambda: CloneModule())
def CloneModule_basic(module, tu: TestUtils):
module.forward(tu.rand(5, 5))
15 changes: 0 additions & 15 deletions test/Conversion/TorchToStablehlo/basic.mlir
Original file line number Diff line number Diff line change
@@ -1,21 +1,6 @@
// RUN: torch-mlir-opt <%s -convert-torch-to-stablehlo -split-input-file -verify-diagnostics | FileCheck %s


// -----

// CHECK-LABEL: func.func @torch.aten.clone$basic(
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32>
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[T1:.*]] = stablehlo.convert %[[T0]] : tensor<?x?xf32>
// CHECK: %[[T2:.*]] = torch_c.from_builtin_tensor %[[T1]] : tensor<?x?xf32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[T2]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.clone$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%none = torch.constant.none
%0 = torch.aten.clone %arg0, %none : !torch.vtensor<[?,?],f32>, !torch.none -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}

// -----

// CHECK-LABEL: func.func @torch.vtensor.literal$basic() -> !torch.vtensor<[],f32> {
Expand Down
Loading