Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change isapprox(a,b) to a \approx b in tests #2419

Merged
merged 2 commits into from
Jan 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 19 additions & 25 deletions test/derivatives.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,14 +15,14 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
nd, const_values = expr_to_nodedata(ex)
adj = adjmat(nd)

#@show nd
# @show nd

storage = zeros(length(nd))
partials_storage = zeros(length(nd))
reverse_storage = zeros(length(nd))

x = [2.0, 3.0]
#@show x
# @show x
fval = forward_eval(
storage,
partials_storage,
Expand All @@ -37,14 +37,14 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
NO_USER_OPS,
)
true_val = sin(x[1]^2) + cos(x[2] * 4) / 5 - 2.0
@test isapprox(fval, true_val)
@test fvaltrue_val

grad = zeros(2)
reverse_eval(reverse_storage, partials_storage, nd, adj)
reverse_extract(grad, reverse_storage, nd, adj, [], 1.0)

true_grad = [2 * x[1] * cos(x[1]^2), -4 * sin(x[2] * 4) / 5]
@test isapprox(grad, true_grad)
@test gradtrue_grad

# Testing view
xx = [1.0, 2.0, 3.0, 4.0, 5.0]
Expand Down Expand Up @@ -128,7 +128,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
[],
NO_USER_OPS,
)
@test isapprox(fval, true_val)
@test fvaltrue_val

outer_reverse_storage = zeros(1)
fill!(grad, 0.0)
Expand All @@ -150,7 +150,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
@assert subexpr_output[1] == 1.0
reverse_eval(reverse_storage, partials_storage, nd, adj)
reverse_extract(grad, reverse_storage, nd, adj, [], subexpr_output[1])
@test isapprox(grad, true_grad)
@test gradtrue_grad

ex = :((1 / x[1])^x[2] - x[3])

Expand All @@ -162,7 +162,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
reverse_storage = zeros(length(nd))

x = [2.5, 3.5, 1.0]
#@show x
# @show x
fval = forward_eval(
storage,
partials_storage,
Expand All @@ -177,14 +177,14 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
NO_USER_OPS,
)
true_val = (1 / x[1])^x[2] - x[3]
@test isapprox(fval, true_val)
@test fvaltrue_val

grad = zeros(3)
reverse_eval(reverse_storage, partials_storage, nd, adj)
reverse_extract(grad, reverse_storage, nd, adj, [], 1.0)

true_grad = [-x[2] * x[1]^(-x[2] - 1), -((1 / x[1])^x[2]) * log(x[1]), -1]
@test isapprox(grad, true_grad)
@test gradtrue_grad

# logical expressions
ex = :(x[1] > 0.5 && x[1] < 0.9)
Expand Down Expand Up @@ -538,7 +538,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
r,
)
true_val = Φ(x[2], x[1] - 1) * cos(x[3])
@test isapprox(fval, true_val)
@test fvaltrue_val
grad = zeros(3)
reverse_eval(reverse_storage, partials_storage, nd, adj)
reverse_extract(grad, reverse_storage, nd, adj, [], 1.0)
Expand All @@ -548,7 +548,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
-4cos(x[3]) * x[2],
-sin(x[3]) * Φ(x[2], x[1] - 1),
]
@test isapprox(grad, true_grad)
@test gradtrue_grad

# dual forward test
function dualforward(ex, x; ignore_nan = false)
Expand Down Expand Up @@ -605,7 +605,7 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
2.0,
zero_ϵ,
)
@test isapprox(fval_ϵ[1], dot(grad, ones(length(x))))
@test fval_ϵ[1]dot(grad, ones(length(x)))

# compare with running dual numbers
_epsilon(x::ForwardDiff.Dual{Nothing,Float64,1}) = x.partials[1]
Expand Down Expand Up @@ -643,30 +643,24 @@ struct ΦEvaluator <: MOI.AbstractNLPEvaluator end
ForwardDiff.Dual(2.0, 0.0),
)
for k in 1:length(nd)
@test isapprox(
_epsilon(forward_dual_storage[k]),
forward_storage_ϵ[k][1],
)
@test _epsilon(forward_dual_storage[k]) ≈ forward_storage_ϵ[k][1]

if !(isnan(_epsilon(partials_dual_storage[k])) && ignore_nan)
@test isapprox(
_epsilon(partials_dual_storage[k]),
partials_storage_ϵ[k][1],
)
@test _epsilon(partials_dual_storage[k]) ≈
partials_storage_ϵ[k][1]
else
@test !isnan(forward_storage_ϵ[k][1])
end
if !(isnan(_epsilon(reverse_dual_storage[k])) && ignore_nan)
@test isapprox(
_epsilon(reverse_dual_storage[k]),
reverse_storage_ϵ[k][1] / 2,
)
@test _epsilon(reverse_dual_storage[k]) ≈
reverse_storage_ϵ[k][1] / 2
else
@test !isnan(reverse_storage_ϵ[k][1])
end
end
for k in 1:length(x)
if !(isnan(_epsilon(output_dual_storage[k])) && ignore_nan)
@test isapprox(_epsilon(output_dual_storage[k]), output_ϵ[k][1])
@test _epsilon(output_dual_storage[k])output_ϵ[k][1]
else
@test !isnan(output_ϵ[k][1])
end
Expand Down
65 changes: 24 additions & 41 deletions test/nlp.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
# TODO: Replace isapprox with ≈ everywhere.

using JuMP
using LinearAlgebra
using SparseArrays
Expand Down Expand Up @@ -254,10 +252,8 @@ end
V = zeros(length(hessian_sparsity))
values = [1.0, 2.0, 3.0] # Values for a, b, and c, respectively.
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(
dense_hessian(hessian_sparsity, V, 3),
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 2.0],
)
@test dense_hessian(hessian_sparsity, V, 3) ≈
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 2.0]

# make sure we don't get NaNs in this case
@NLobjective(m, Min, a * b + 3 * c^2)
Expand All @@ -266,19 +262,15 @@ end
values = [1.0, 2.0, -1.0]
V = zeros(length(hessian_sparsity))
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(
dense_hessian(hessian_sparsity, V, 3),
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 6.0],
)
@test dense_hessian(hessian_sparsity, V, 3) ≈
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 6.0]

# Initialize again
MOI.initialize(d, [:Hess])
V = zeros(length(hessian_sparsity))
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(
dense_hessian(hessian_sparsity, V, 3),
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 6.0],
)
@test dense_hessian(hessian_sparsity, V, 3) ≈
[0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 6.0]
end

@testset "NaN corner case (Issue #695)" begin
Expand All @@ -297,7 +289,7 @@ end
values = [1.0, 2.0] # For x and y.
MOI.eval_hessian_lagrangian_product(d, h, values, v, 1.0, Float64[])
correct = [0.0 -1/(2*2^(3/2)); -1/(2*2^(3/2)) 3/(4*2^(5/2))] * v
@test isapprox(h, correct)
@test h ≈ correct
end

@testset "NaN corner case (Issue #1205)" begin
Expand All @@ -312,7 +304,7 @@ end
V = zeros(length(hessian_sparsity))
values = zeros(1)
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(dense_hessian(hessian_sparsity, V, 1), [0.0])
@test dense_hessian(hessian_sparsity, V, 1)[0.0]
end

@testset "NaN corner case - ifelse (Issue #1205)" begin
Expand All @@ -327,7 +319,7 @@ end
V = zeros(length(hessian_sparsity))
values = zeros(1)
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(dense_hessian(hessian_sparsity, V, 1), [0.0])
@test dense_hessian(hessian_sparsity, V, 1)[0.0]
end

@testset "Product corner case (issue #1181)" begin
Expand Down Expand Up @@ -371,12 +363,12 @@ end
V = zeros(length(hessian_sparsity))
MOI.eval_hessian_lagrangian(d, V, values, 1.0, [2.0, 3.0])
correct_hessian = [3.0 1.0 0.0; 1.0 0.0 2.0; 0.0 2.0 2.0]
@test isapprox(dense_hessian(hessian_sparsity, V, 3), correct_hessian)
@test dense_hessian(hessian_sparsity, V, 3)correct_hessian

h = ones(3) # The input values should be overwritten.
v = [2.4, 3.5, 1.2]
MOI.eval_hessian_lagrangian_product(d, h, values, v, 1.0, [2.0, 3.0])
@test isapprox(h, correct_hessian * v)
@test h ≈ correct_hessian * v
end

@testset "Hessians and Hess-vec with subexpressions" begin
Expand Down Expand Up @@ -599,20 +591,15 @@ end
V = zeros(length(hessian_sparsity))
values = ones(18)
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(
dense_hessian(hessian_sparsity, V, 18),
ones(18, 18) - diagm(0 => ones(18)),
)
@test dense_hessian(hessian_sparsity, V, 18) ≈
ones(18, 18) - diagm(0 => ones(18))

values[1] = 0.5
MOI.eval_hessian_lagrangian(d, V, values, 1.0, Float64[])
@test isapprox(
dense_hessian(hessian_sparsity, V, 18),
[
0 ones(17)'
ones(17) (ones(17, 17)-diagm(0 => ones(17)))/2
],
)
@test dense_hessian(hessian_sparsity, V, 18) ≈ [
0 ones(17)'
ones(17) (ones(17, 17)-diagm(0 => ones(17)))/2
]
end

@testset "eval_objective and eval_objective_gradient" begin
Expand All @@ -630,13 +617,11 @@ end
d = JuMP.NLPEvaluator(m)
MOI.initialize(d, [:Grad])
variable_values = fill(2.0, (4,))
@test isapprox(
MOI.eval_objective(d, variable_values),
variable_values[1] + 1 + variable_values[3] + 3variable_values[4],
)
@test MOI.eval_objective(d, variable_values) ≈
variable_values[1] + 1 + variable_values[3] + 3variable_values[4]
grad = zeros(4)
MOI.eval_objective_gradient(d, grad, variable_values)
@test isapprox(grad, [1.0, 0.0, 1.0, 3.0])
@test grad[1.0, 0.0, 1.0, 3.0]
end

@testset "eval_constraint and Jacobians" begin
Expand All @@ -660,10 +645,8 @@ end
variable_values = fill(2.0, (4,))
constraint_value = zeros(1)
MOI.eval_constraint(d, constraint_value, variable_values)
@test isapprox(
constraint_value[1],
variable_values[1] + 1 + variable_values[3] + 3variable_values[4],
)
@test constraint_value[1] ≈
variable_values[1] + 1 + variable_values[3] + 3variable_values[4]
jacobian_sparsity = MOI.jacobian_structure(d)
I = [i for (i, j) in jacobian_sparsity]
J = [j for (i, j) in jacobian_sparsity]
Expand All @@ -672,7 +655,7 @@ end
MOI.eval_constraint_jacobian(d, jac_nonzeros, variable_values)
jac_values = zeros(4)
jac_values[J] = jac_nonzeros
@test isapprox(jac_values, [1.0, 0.0, 1.0, 3.0])
@test jac_values[1.0, 0.0, 1.0, 3.0]
end

@testset "set_NL_objective and add_NL_constraint" begin
Expand Down Expand Up @@ -856,7 +839,7 @@ end
err = ErrorException(
"Encountered an error parsing nonlinear expression: we don't support " *
"models of type $(typeof(model)). In general, JuMP's nonlinear features " *
"don't work with JuMP-extensions."
"don't work with JuMP-extensions.",
)
@test_throws(err, @NLexpression(model, sqrt(x)))
end
Expand Down