forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Split PR and add Maisi find mask script (Project-MONAI#1751)
Fixes # . ### Description Split PR and add Maisi find mask script ### Checks <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [x] Avoid including large-size files in the PR. - [x] Clean up long text outputs from code cells in the notebook. - [x] For security purposes, please check the contents and remove any sensitive info such as user names and private key. - [ ] Ensure (1) hyperlinks and markdown anchors are working (2) use relative paths for tutorial repo files (3) put figure and graphs in the `./figure` folder - [ ] Notebook runs automatically `./runner.sh -t <path to .ipynb file>` --------- Signed-off-by: root <root@ipp1-3397.ipp1u1.colossus.nvidia.com> Signed-off-by: Can-Zhao <volcanofly@gmail.com> Co-authored-by: root <root@ipp1-3397.ipp1u1.colossus.nvidia.com> Co-authored-by: YunLiu <55491388+KumoLiu@users.noreply.github.com>
- Loading branch information
1 parent
8857a5c
commit 4ad30a6
Showing
1 changed file
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import json | ||
import os | ||
from monai.apps.utils import extractall | ||
from typing import Sequence | ||
|
||
from monai.utils import ensure_tuple_rep | ||
|
||
|
||
def convert_body_region(body_region: str | Sequence[str]) -> Sequence[int]: | ||
""" | ||
Convert body region string to body region index. | ||
Args: | ||
body_region: list of input body region string. If single str, will be converted to list of str. | ||
Return: | ||
body_region_indices, list of input body region index. | ||
""" | ||
if type(body_region) is str: | ||
body_region = [body_region] | ||
|
||
# body region mapping for maisi | ||
region_mapping_maisi = { | ||
"head": 0, | ||
"chest": 1, | ||
"thorax": 1, | ||
"chest/thorax": 1, | ||
"abdomen": 2, | ||
"pelvis": 3, | ||
"lower": 3, | ||
"pelvis/lower": 3, | ||
} | ||
|
||
# perform mapping | ||
body_region_indices = [] | ||
for region in body_region: | ||
normalized_region = region.lower() # norm str to lower case | ||
if normalized_region not in region_mapping_maisi: | ||
raise ValueError(f"Invalid region: {normalized_region}") | ||
body_region_indices.append(region_mapping_maisi[normalized_region]) | ||
|
||
return body_region_indices | ||
|
||
|
||
def find_masks( | ||
body_region: str | Sequence[str], | ||
anatomy_list: int | Sequence[int], | ||
spacing: Sequence[float] | float = 1.0, | ||
output_size: Sequence[int] = [512, 512, 512], | ||
check_spacing_and_output_size: bool = False, | ||
database_filepath: str = "./data/database.json", | ||
mask_foldername: str = "./data/masks/", | ||
): | ||
""" | ||
Find candidate masks that fullfills all the requirements. | ||
They shoud contain all the body region in `body_region`, all the anatomies in `anatomy_list`. | ||
If there is no tumor specified in `anatomy_list`, we also expect the candidate masks to be tumor free. | ||
If check_spacing_and_output_size is True, the candidate masks need to have the expected `spacing` and `output_size`. | ||
Args: | ||
body_region: list of input body region string. If single str, will be converted to list of str. | ||
The found candidate mask will include these body regions. | ||
anatomy_list: list of input anatomy. The found candidate mask will include these anatomies. | ||
spacing: list of three floats, voxel spacing. If providing a single number, will use it for all the three dimensions. | ||
output_size: list of three int, expected candidate mask spatial size. | ||
check_spacing_and_output_size: whether we expect candidate mask to have spatial size of `output_size` and voxel size of `spacing`. | ||
database_filepath: path for the json file that stores the information of all the candidate masks. | ||
mask_foldername: directory that saves all the candidate masks. | ||
Return: | ||
candidate_masks, list of dict, each dict contains information of one candidate mask that fullfills all the requirements. | ||
""" | ||
# check and preprocess input | ||
body_region = convert_body_region(body_region) | ||
|
||
if isinstance(anatomy_list, int): | ||
anatomy_list = [anatomy_list] | ||
|
||
spacing = ensure_tuple_rep(spacing, 3) | ||
|
||
if not os.path.exists(mask_foldername): | ||
zip_file_path = mask_foldername + ".zip" | ||
|
||
if not os.path.isfile(zip_file_path): | ||
raise ValueError(f"Please download {zip_file_path} following the instruction in ./data/README.md.") | ||
|
||
print(f"Extracting {zip_file_path}...") | ||
extractall(filepath=mask_foldername, output_dir=mask_foldername) | ||
print(f"Unzipped {zip_file_path} to {mask_foldername}.") | ||
|
||
if not os.path.isfile(database_filepath): | ||
raise ValueError(f"Please download {database_filepath} following the instruction in ./data/README.md.") | ||
with open(database_filepath, "r") as f: | ||
db = json.load(f) | ||
|
||
# select candidate_masks | ||
candidate_masks = [] | ||
for _item in db: | ||
if not set(anatomy_list).issubset(_item["label_list"]): | ||
continue | ||
|
||
# extract region indice (top_index and bottom_index) for candidate mask | ||
top_index = [index for index, element in enumerate(_item["top_region_index"]) if element != 0] | ||
top_index = top_index[0] | ||
bottom_index = [index for index, element in enumerate(_item["bottom_region_index"]) if element != 0] | ||
bottom_index = bottom_index[0] | ||
|
||
# whether to keep this mask, default to be True. | ||
keep_mask = True | ||
|
||
# if candiate mask does not contain all the body_region, skip it | ||
for _idx in body_region: | ||
if _idx > bottom_index or _idx < top_index: | ||
keep_mask = False | ||
|
||
for tumor_label in [23, 24, 26, 27, 128]: | ||
# we skip those mask with tumors if users do not provide tumor label in anatomy_list | ||
if tumor_label not in anatomy_list and tumor_label in _item["label_list"]: | ||
keep_mask = False | ||
|
||
if check_spacing_and_output_size: | ||
# if the output_size and spacing are different with user's input, skip it | ||
for axis in range(3): | ||
if _item["dim"][axis] != output_size[axis] or _item["spacing"][axis] != spacing[axis]: | ||
keep_mask = False | ||
|
||
if keep_mask: | ||
# if decide to keep this mask, we pack the information of this mask and add to final output. | ||
candidate = { | ||
"pseudo_label": os.path.join(mask_foldername, _item["pseudo_label_filename"]), | ||
"spacing": _item["spacing"], | ||
"dim": _item["dim"], | ||
"top_region_index": _item["top_region_index"], | ||
"bottom_region_index": _item["bottom_region_index"], | ||
} | ||
|
||
# Conditionally add the label to the candidate dictionary | ||
if "label_filename" in _item: | ||
candidate["label"] = os.path.join(mask_foldername, _item["label_filename"]) | ||
|
||
candidate_masks.append(candidate) | ||
|
||
if len(candidate_masks) == 0 and not check_spacing_and_output_size: | ||
raise ValueError("Cannot find body region with given anatomy list.") | ||
|
||
return candidate_masks |