Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ip-adapter] fix problem using embeds with the plus version of ip adapters #7189

Merged
merged 6 commits into from
Mar 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 12 additions & 5 deletions src/diffusers/pipelines/animatediff/pipeline_animatediff.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,15 +400,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -509,9 +516,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -478,15 +478,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -589,9 +596,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

def get_timesteps(self, num_inference_steps, timesteps, strength, device):
Expand Down
17 changes: 12 additions & 5 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -510,15 +510,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -726,9 +733,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

def check_image(self, image, prompt, prompt_embeds):
Expand Down
17 changes: 12 additions & 5 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -503,15 +503,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -713,9 +720,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
Expand Down
17 changes: 12 additions & 5 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py
Original file line number Diff line number Diff line change
Expand Up @@ -628,15 +628,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -871,9 +878,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -537,15 +537,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -817,9 +824,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

def prepare_control_image(
Expand Down
17 changes: 12 additions & 5 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,15 +515,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -730,9 +737,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -567,15 +567,22 @@ def prepare_ip_adapter_image_embeds(

image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)

return image_embeds
Expand Down Expand Up @@ -794,9 +801,9 @@ def check_inputs(
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim != 3:
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)

# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
Expand Down
Loading
Loading