Skip to content

Neural Regression with Embeddings for Numeric Attribute Prediction in Knowledge Graphs

Notifications You must be signed in to change notification settings

dice-group/literal-embeddings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

literal-embeddings

Neural Regression with Embeddings for Numeric Attribute ( Literals ) Prediction in Knowledge Graphs

Installation and Requirements

To execute the Literal Embedding model, please install the dice-embeddings framework

Configurable Arguments

The following arguments can be used to configure the script. Default values are provided, and they will be used unless explicitly modified on the main script.

Default Arguments

  • --dataset_dir: KGs / FamilyT
  • --lit_dataset_dir: KGs/FamilyL
  • --batch_size: 1024
  • --num_epochs: 100
  • --embedding_dim: 128
  • --lr: 0.05
  • --optimize_with_literals: True
  • --lit_lr: 0.0001
  • --lit_epochs: 500
  • --save_embeddings_as_csv: False
  • --save_experiment: False
  • --pretrained_kge: False
  • --pretrained_kge_path: None

--optimize_with_literals

  • If set to True, both the Knowledge Graph Embedding (KGE) model and the Literal Embedding model are trained together in a combined manner. If set to False (default), only the KGE model is trained.

--pretrained_kge

If pretrained_kge is set to true, provide a valid path to a folder that contains a pre-trained KGE model. This will bypass all the combined training procedures and only run an instance of LiteralEmbedding model.

Usage

Set the desired args within the main script and run

python main.py

About

Neural Regression with Embeddings for Numeric Attribute Prediction in Knowledge Graphs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published