-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
246 lines (213 loc) · 7.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
### Main File
import argparse
import json
import os
from datetime import datetime
import pandas as pd
import torch
import torch.nn.functional as F
import torch.optim as optim
from dicee.config import Namespace
from dicee.dataset_classes import KvsAll
from dicee.evaluator import Evaluator
from dicee.knowledge_graph import KG
from dicee.knowledge_graph_embeddings import KGE
from dicee.models import Keci, TransE
from dicee.static_funcs import read_or_load_kg, store
from torch.utils.data import DataLoader
from src.dataset import LiteralData
from dicee.static_funcs import intialize_model
from src.trainer import train_literal_model, train_model
from src.utils import evaluate_lit_preds
from src.dataset import LiteralData
from src.model import LiteralEmbeddings
# Configuration setup
args = Namespace()
args.scoring_technique = "KvsAll"
args.dataset_dir = "KGs/FamilyT"
args.eval_model = "train_test_eval"
args.apply_reciprical_or_noise = True
args.neg_ratio = 0
args.label_smoothing_rate = 0.0
args.batch_size = 1024
args.normalization = None
args.num_epochs = 150
args.embedding_dim = 128
args.lr = 0.05
args.lit_dataset_dir = "KGs/FamilyL"
args.optimize_with_literals = False
args.lit_lr = 0.001
args.lit_epochs = 500
args.save_embeddings_as_csv = False
args.save_experiment = True
args.pretrained_kge = False
args.random_literals = True
args.pretrained_kge_path = "Experiments/2025-02-13_09-02-27-588"
args.alpha = 1
args.beta = 1
args.p = 0
args.q = 1
def main(args):
# Save Experiment Results
exp_date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S-%f")[:-3]
exp_path_name = f"Experiments/{exp_date_time}"
args.full_storage_path = exp_path_name
os.makedirs(exp_path_name, exist_ok=True)
# Device setup
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model and Dataset Initialization
entity_dataset = read_or_load_kg(args, KG)
args.num_entities = entity_dataset.num_entities
args.num_relations = entity_dataset.num_relations
train_dataset = KvsAll(
train_set_idx=entity_dataset.train_set,
entity_idxs=entity_dataset.entity_to_idx,
relation_idxs=entity_dataset.relation_to_idx,
form="EntityPrediction",
)
train_dataloader = DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True
)
model = Keci(
args={
"num_entities": entity_dataset.num_entities,
"num_relations": entity_dataset.num_relations,
"embedding_dim": args.embedding_dim,
"p": args.p,
"q": args.q,
"optim": "Adam",
}
).to(args.device)
args.model = model.name
literal_dataset = None
Literal_model = None
if args.optimize_with_literals:
literal_dataset = LiteralData(
dataset_dir=args.lit_dataset_dir,
ent_idx=entity_dataset.entity_to_idx,
normalization="min-max",
)
Literal_model = LiteralEmbeddings(
num_of_data_properties=literal_dataset.num_data_properties,
embedding_dims=args.embedding_dim,
)
# Training
loss_log = train_model(
model,
train_dataloader,
args,
literal_dataset,
Literal_model,
)
# Evaluating the model
evaluator = Evaluator(args=args)
model.to("cpu")
evaluator.eval(
dataset=entity_dataset,
trained_model=model,
form_of_labelling="EntityPrediction",
)
model.to(args.device)
if args.optimize_with_literals:
lit_results = evaluate_lit_preds(
literal_dataset,
dataset_type="test",
model=model,
literal_model=Literal_model,
device=args.device,
)
print("Training Literal model After Combined Entity-Literal Training")
Lit_model, _ = train_literal_model(
args=args,
literal_dataset=literal_dataset,
kge_model=model,
)
print(" Perfromance of Literal Model on Enhanced Entitiy Embeddings ")
lit_results = evaluate_lit_preds(
literal_dataset,
dataset_type="test",
model=model,
literal_model=Lit_model,
device=args.device,
)
if args.save_experiment:
lit_results_file_path = os.path.join(exp_path_name, "lit_results.json")
with open(lit_results_file_path, "w") as f:
json.dump(lit_results.to_dict(orient="records"), f, indent=4)
if args.save_experiment:
store(
trained_model=model,
model_name="model",
full_storage_path=args.full_storage_path,
save_embeddings_as_csv=args.save_embeddings_as_csv,
)
print(f"The experiment results are stored at {exp_path_name}")
df_loss_log = pd.DataFrame.from_dict(loss_log, orient="index").transpose()
df_loss_log.to_csv(
os.path.join(exp_path_name, "loss_log.tsv"), sep="\t", index=False
)
args.device = str(args.device)
exp_configs = vars(args)
with open(os.path.join(exp_path_name, "configuration.json"), "w") as f:
json.dump(exp_configs, f, indent=4)
with open(os.path.join(exp_path_name, "lp_results.json"), "w") as f:
json.dump(evaluator.report, f, indent=4)
def train_with_kge(args):
print(
"Training Literal Embedding model using pre-trained KGE model at %s"
% args.pretrained_kge_path
)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
config_path = os.path.join(args.pretrained_kge_path, "configuration.json")
model_path = os.path.join(args.pretrained_kge_path, "model.pt")
entity_to_idx_path = os.path.join(args.pretrained_kge_path, "entity_to_idx.csv")
# Load configuration
with open(config_path) as json_file:
configs = json.load(json_file)
# Load model weights
weights = torch.load(
model_path, map_location=torch.device("cpu"), weights_only=True
)
# Initialize the model
kge_model, _ = intialize_model(configs, 0)
# Load the model weights into the model
kge_model.load_state_dict(weights)
e2idx_df = pd.read_csv(entity_to_idx_path, index_col=0)
except:
print(" Building the KGE model failed: Fix args ")
exit(0)
literal_dataset = LiteralData(
dataset_dir=args.lit_dataset_dir, ent_idx=e2idx_df, normalization="min-max"
)
Lit_model, loss_log = train_literal_model(
args=args,
literal_dataset=literal_dataset,
kge_model=kge_model,
)
lit_results = evaluate_lit_preds(
literal_dataset,
dataset_type="test",
model=kge_model,
literal_model=Lit_model,
device=args.device,
)
if args.save_experiment:
args.device = str(args.device)
exp_date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S-%f")[:-3]
exp_path_name = f"Experiments/{exp_date_time}"
os.makedirs(exp_path_name, exist_ok=True)
lit_results_file_path = os.path.join(exp_path_name, "lit_results.json")
with open(lit_results_file_path, "w") as f:
json.dump(lit_results.to_dict(orient="records"), f, indent=4)
with open(os.path.join(exp_path_name, "configuration.json"), "w") as f:
json.dump(configs, f, indent=4)
df_loss_log = pd.DataFrame.from_dict(loss_log, orient="index").transpose()
df_loss_log.to_csv(
os.path.join(exp_path_name, "loss_log.tsv"), sep="\t", index=False
)
if __name__ == "__main__":
if args.pretrained_kge:
train_with_kge(args)
else:
main(args) # Pass to main function