Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature/StringConcatenator #52

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
301 changes: 301 additions & 0 deletions examples/strings/StringConcatenator.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# StringConcatenator\n",
"This notebook shows the functionality of the `StringConcatenator` class. This Transformer combines data from specified columns, of mixed datatypes, into a new column containing one string."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import tubular\n",
"from tubular.strings import StringConcatenator"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'0.3.3'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tubular.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create sample data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"character_df = pd.DataFrame(([':', ')', 5], [':', '(', 3]), columns=['c1', 'c2', 'c3'])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>c1</th>\n",
" <th>c2</th>\n",
" <th>c3</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>:</td>\n",
" <td>)</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>:</td>\n",
" <td>(</td>\n",
" <td>3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" c1 c2 c3\n",
"0 : ) 5\n",
"1 : ( 3"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"character_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple usage"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialising StringConcatenatorTransformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The user must specify the following;\n",
"- `columns` giving the columns to join\n",
"- `new column` giving the name of the new column\n",
"- `separator` giving the separator for joining (optional)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"to_merge = ['c1', 'c2', 'c3']\n",
"\n",
"join_columns = StringConcatenator(to_merge, \"merged\", \"-\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### StringConcatenatorTransformer fit\n",
"There is no fit method for the StringConcatenatorTransformer as the methods that it can run do not 'learn' anything from the data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### StringConcatenatorTransformer transform"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"joined_df = join_columns.transform(character_df)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>c1</th>\n",
" <th>c2</th>\n",
" <th>c3</th>\n",
" <th>merged</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>:</td>\n",
" <td>)</td>\n",
" <td>5</td>\n",
" <td>:-)-5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>:</td>\n",
" <td>(</td>\n",
" <td>3</td>\n",
" <td>:-(-3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" c1 c2 c3 merged\n",
"0 : ) 5 :-)-5\n",
"1 : ( 3 :-(-3"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"joined_df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.0 ('tubular-dev')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": true,
"toc_window_display": true
},
"vscode": {
"interpreter": {
"hash": "cc666868ff21538e6058ba6d4768423bd0d0d7d7fded3ffb1bc309a0bf9339c2"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading