Skip to content

Commit

Permalink
05
Browse files Browse the repository at this point in the history
  • Loading branch information
SmBito committed Oct 4, 2019
1 parent 9ebad0d commit 487569a
Show file tree
Hide file tree
Showing 2 changed files with 119 additions and 0 deletions.
Binary file added .DS_Store
Binary file not shown.
119 changes: 119 additions & 0 deletions 05_Convolutional_Neural_Networks.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,125 @@
" dogsvcats.make_training_data()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"training_data = np.load(\"training_data.npy\", allow_pickle = True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"24946\n"
]
}
],
"source": [
"print(len(training_data))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[array([[167, 173, 179, ..., 165, 255, 255],\n",
" [184, 192, 180, ..., 147, 255, 255],\n",
" [199, 200, 196, ..., 179, 255, 255],\n",
" ...,\n",
" [255, 255, 255, ..., 255, 255, 255],\n",
" [255, 255, 255, ..., 255, 255, 255],\n",
" [255, 255, 255, ..., 255, 255, 255]], dtype=uint8)\n",
" array([1., 0.])]\n"
]
}
],
"source": [
"print(training_data[0])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[array([[23, 14, 17, ..., 36, 20, 22],\n",
" [16, 24, 19, ..., 27, 40, 29],\n",
" [25, 24, 23, ..., 28, 22, 32],\n",
" ...,\n",
" [69, 69, 78, ..., 96, 92, 84],\n",
" [75, 77, 70, ..., 90, 87, 67],\n",
" [59, 61, 73, ..., 85, 82, 77]], dtype=uint8)\n",
" array([1., 0.])]\n"
]
}
],
"source": [
"print(training_data[1])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnW3MX1WZ7q+7LRQUtRSQvtJSSqcpLbRYDKOIyAyGl3EwhoxwJooJSWM8JxEPJyOeScYz8cTgl2HGxHBEwOEDAedFAyETFWgVrBUobXnpC20p9AUKVaCCb0ifrvPh+Zfsda3refbu0/b/PHVdv4TQe3evvddee6/u/33t+75XpJRgjKmLcaPdAWNM//HEN6ZCPPGNqRBPfGMqxBPfmArxxDemQjzxjakQT3xjKuSQJn5EXBoRz0bE1oi48XB1yhhzZImRRu5FxHgAmwFcAmAXgMcBXJNS2jBUm3HjxqXx48e/Y+/fv18dd9jzdulv2zG6HpeP02YPdZw2xo3L//3lY3S5HnXeCRMmZPbAwMCIjtNGW//4+lQb9SxwX3gf1YbPxWPQ5Txd4P7zMQ5XRGxzvgDAvn37hu3LwMAA9u/f3/rATGjbYRg+CGBrSmlb7+T3ALgSwJATf/z48Zg8efI79u9//3u5z3CoG8fbJk6cOOwxFG+99Vax7Zhjjhm2b8cee2zRhicXPyBq8h1//PGZzQ9N25gAwNtvv11sO+mkkzL7jTfeyOzDNQl4svE1H3fccUUbHrvf/va3rX158803M/t3v/td0YbH8tRTT209D49dl39o+Z7wff3DH/5w0MdQx3nf+96X2Xv37i3aNMf/9ddfbz0vcGg/9acD2Nmwd/W2GWPGOIfyxu9ERCwDsAzQP/mMMf3nUCb+iwBmNuwZvW0ZKaVbAdwKABMmTEjNn9Tvete7ioPyzy7+Sah+inIb/omu9uGfUOonIP9DxT8j1U/Ntp/l6pr5J/dIfm6/5z3vKbb95je/yWweyz/+8Y9FG96H+6t8TOWyNVEuBY+d+nnNY8n7qJ/TfM94H9XXkbiGfI/4vCeccELRhsdBuX18jdzfk08+uWjTfHa76luH8gp+HMCZEXF6RBwL4GoA9x3C8YwxfWLEb/yU0r6I+B8AfgRgPIA7UkrrD1vPjDFHjEPy8VNK/wXgvw5TX4wxfcJqmzEVcsRV/SYRkQlkXYJOWBBRwh0LGur7eptopb6Ds/jCtuq/Onfb37MAxWKTEsd4nNS38ve+972ZzWOnvgnzNbIIp/rShmrTJTahLeCIBVqgXQyeNGlS0YbHv4tAxtfE90PFhTBKKG0TNF977bWiTfNZ7oe4Z4w5SvHEN6ZCPPGNqZC++vhA7teoSD7lwzdRfjW36eITs1/X5psDpQ6g/Go+N1+j8uumTJky7DFUoFAXODaf+3vKKacUbX75y19mdpckFx67LoEqvE35/Ownc1943NS5+T6rNi++mMed8TGU38zPQhfNha+nyzPXFiik9umC3/jGVIgnvjEV4olvTIX0/Tt+0x9XvpPyjZqo7+1dvl2yD8aceOKJxTb+zs1agmrD/WcfcyRJLgq+Hk7IUX3hsesyliNJPuG+qQSotvMCwK9//evM5nz8efPmFW327NmT2ZyfrnzkmTNnZvbOnTszW92zthoKKgGKx0WNP+/D46L6MhL8xjemQjzxjakQT3xjKsQT35gKGdUkHSXosIDGwpAK9GgTBIH2AAslWrEwx22UoNZW9aZLxVkWitT1cd9U8kmbEKREt9mzZ2f2r371q8xWohVfE9vqnvF9ZuEOaBdGVcIKC4JsT59eloXcvXt3Zs+aNSuzt2/fXrRpq4TcpQKzqvzDiVX8/KjEqi6FPRm/8Y2pEE98YyrEE9+YCul7kk4T5S9yIsO73/3uzO5SfEH53gz7iyrRgX1VXpxB+YttCR/Kx+d92KdXiTGsSSg/r63AhxrLl19+ObOnTZuW2bt27SraMG2VkoFSc9myZUuxD18jjx33FSg1Cfa12wK5gDJRac6cOcU+27Zty2zWMVgrAcpkK06iAtqrAqs50xYUp/Ab35gK8cQ3pkI88Y2pEE98Yyqkr+LeuHHjsoqgzZVzD8ABFyzCqWo0LAi2LSUMlAKaCiDhDCzu78aNG4s2LCyqwBqGhSEOblHCHQtmXQKbeB81liOpVNQmIqrgqOeff37YYwBlgBELsF2yGtuW2gbKZ46z9ZRgNnfu3MxmoZFFRqAUJzlYByiFUX621Vg271nX9Sn9xjemQjzxjakQT3xjKmRUA3hUAANXX22rutsV9n26BNawr/epT30qs2+55ZaiDVeuffXVVzNbBZCw38zXrHzMLpVgeZ+21YSAMkCENQtOYAHKxBFesnvz5s1FG06w6RJ40rbKDKCr2jRRmguPA+sNSn9gHen9739/ZqsgMn7e1T58j7okeTWP03WlI7/xjakQT3xjKsQT35gKGVUfv0uVV/a/VJICb2MfEyh96zafHyh9bfbrzjjjjKLN8uXLhz3vSSedVLThc7et0gK0F78ASt+0ywquHLvAx1XJNNxmwYIFmf3II4+09k2NP3+DZ/2n6zfrJur7ett51fPEcHXfqVOnFvtwXIK6Zt7WVvAD6LbyMOM3vjEV4olvTIW0TvyIuCMi9kTEM41tkyPigYjY0vt/ubKEMWbM0uWN/68ALqVtNwJ4KKV0JoCHerYx5iihVdxLKT0cEbNp85UALur9+U4APwHw5bZjRUQmVHUJZmGU0MLinhINWdTpIuBwm8ceeyyzly1bVrThYBZuo5aMZgGTBRwlynEbVUGIk3R4vJVQymPHYpMK+vnIRz6S2VzZp0vSlBKtulaTOZg2qmLukiVLMrvLsuQsqPE4vfLKK0UbFvy6VDPi86hksuacOdIVeE5NKR2oSfwygFOH29kYM7Y45M95KaUUEeXrpkdELAOwDDh84bfGmENjpG/8VyJiKgD0/r9nqB1TSremlJamlJZ2KXRojDnyjHQm3gfgWgA39f5/70gOonw/9iHZd1I+cpsuAJR+J/tgyjfighLsv3MCDgAsXLgws7lYx2mnnVa04cq8bYU5gDIYRPnefBweA1WllrUO9inVP958zV/72tcyu8ty6GpVmbZCG0rL4Wvm50Udk9twX9TY8vLbHMSknlN+fjgJDCifBQ50Un0ZydLZXT7n3Q1gFYA/i4hdEXEdBif8JRGxBcBf9mxjzFFCF1X/miH+6i8Oc1+MMX3CkXvGVEjfi202/SdVbJB9evZl2Zc6cNwmyqdk35R9JfWtnIsw8nfv008/vWizatWqzO6ywi4fl1fs+cUvflG06aJr8DVyX04++eSizXPPPZfZXNzxggsuKNpMmTIls1k/6fIdfySJJqoN+/1tKxED7clLSktgLaTtWQHK8WedACiTuHgslUbRfLbV9Sn8xjemQjzxjakQT3xjKsQT35gK6XsoXVOIUKIPCzYsiKjACA5wUQEvLACy2NcluYEDdu64445in0suuSSzOUnn8ccfL9rwOJx//vmZrcQnFpeefPLJYh9OPuGkEJVIcuWVV2Y2L1N+3nnnFW3mz5+f2SxQdQnOUfeVl6tuC84B2qvyqKo3LIJy39Rzys8YP6ddUMdlUZCr93IQEJAH+XiZbGPMkHjiG1MhnvjGVEhfffyIyHwQ5fux38MBO10CPVQiA/s+7OuphBvuy44dOzL7+uuvL9r88Ic/zGyuSqsKKXAg0NatWzP77LPPLtrcd999mc3FMIDyGrdt25bZN998c9Hmrrvuymz28S+88MKizde//vVh23ByEFAGIKmiFG2BQcqfZR+fdQAV4MLPIfvv6p7xcfkYKsCKn6cuhVDagrCGOk4bfuMbUyGe+MZUiCe+MRXSdx+/6Qup79PsG7FPpnwc9oOUT8bwt2bVFy6CwOdes2ZN0ebBBx8c9ryTJ08utnFMASfCcOIPUPr0KvmH202bNi2zN23aVLRhP5pXCH7hhReKNueee25mb9iwIbNV8Q6+r8on5vHn2AX1TZ7HgX1x1Ya/jfO3c/XMcYINX6N6nlg7UHoVt2NbJak1z8061FD4jW9MhXjiG1MhnvjGVIgnvjEV0vcknWaARZeKoV2SH1iw4Qo2QCmSsNClgkF27tyZ2SwU3XbbbUWbSZMmZfbixYszWy3TPH369Mxev359Zp94Yrk0IQeM7N69u9iHV4SZO3duZs+ZM6dow/eERSuuAguU18SVlVQAz2uvvZbZaslxDkx55plnMlsJmm3VmFQSD/eX77N6BrkNP19dkmVGssx325LpTtIxxgyJJ74xFeKJb0yF9D2Apxm0oIIc2EfmgBcV9HDKKae0npuLOrCPqfxF9u1Yf1AaBbfha1Tn4WAW9uNUZVU+rkrUWLRoUWY//fTTmb1y5cqiDesjfM0c+AQAP/jBDzKbC4Ds2VOusMaBKGpcOEiGtY4uBTJUJVuGr4nvR5d71iVRhu+Z8vHbVuRR19zcx1V2jTFD4olvTIV44htTIX338ZvJGMo3Vz5kE/bV1TalHajVUJqo76O8jf1HTiIBSh/tpZdeymxeGQgAfv7zn2c2J+Cob/T8vVb1hfvP/qJayYjP9bOf/SyzubAIUH6D50QedZ955Rnli/M1sa+t4htYT+Bx4kQfdW4eJ/VtnLUm1ntUwVe+ZqXdqCScJkpLaCYVdV2K3m98YyrEE9+YCvHEN6ZCPPGNqZC+insTJ07MKsqqwAiudtslaYdFk5kzZxb7sLjHAqBaleWNN97IbBbmVDARV4bl6rFK3OOgC16aWlWg/cAHPpDZPAYAMGPGjMzmZbGVUMrJPyx8cUIR0J7kou4zj4MSJ/ne89iqhCeu5MPC3FlnnVW04WeD+8vjCOj7ONx5gTI4TQl1fO85wUnd5+Z9VAE+Cr/xjakQT3xjKqR14kfEzIhYEREbImJ9RHyxt31yRDwQEVt6/y8/qhpjxiRdfPx9AG5IKa2JiPcAeCIiHgDwOQAPpZRuiogbAdwI4MvDHWhgYCDzUbr4u+xfqdV3OJFH6QAcUME+WJcAHi74oVaO/da3vpXZn/nMZzJ7+fLlRRsO2nj22WczW+kP7Mtu37692If95nnz5mU2+/yqL6xjdCn4wX4pJ0QBpS+qAqzaquqqe6a0giYqsYqvkc+rxn/q1KmZ3RYEBJQrJim95Lnnnstsvh513OacOGyFOFJKu1NKa3p/fhPARgDTAVwJ4M7ebncC+GSnMxpjRp2D8vEjYjaAJQAeBXBqSunAP/8vAyjrXRljxiSdJ35EnADgPwFcn1LKvnOlwd/nMhE4IpZFxOqIWN32M8wY0x86TfyIOAaDk/6ulNL3e5tfiYipvb+fCqCstgAgpXRrSmlpSmlpl8KZxpgjT6u4F4Nqwe0ANqaU/qnxV/cBuBbATb3/39vlhE3xQYkznJ3HQpH61cDCnTpumzCklt1ioYT7smDBgqINB3/cdNNNmf2xj32saMPiEgdpKEGHl9K+++67i31YyPrqV7+a2So7jDPpOGhGBZDw+HMbFqyAMshKHZdFQQ54UdmFfM0sIqqKv1wJh69HBcXwc8qZgrwsF1BWKFbVcniJcX7eVZvmuHStwNNF1f8wgM8AeDoi1vW2/W8MTvh/i4jrAGwH8DedzmiMGXVaJ35K6WcAhvpG8BeHtzvGmH7gyD1jKqSvSTrjxo3LfDAl9nFQCVd9VcEgnKyhKvCwD6aWS26DdQGunAMAn//85zO7i/7AfilrC6qCzTe/+c1h2wClH/25z30us7/73e8Wbdin5Mq8KoCH+8c+/axZs4o2HHCk/GjWUNatW5fZHDiktvHzoyrbsl89e/bszFbPCi8x3pa0A5RajkrSYR+9rSIPkPdfJY4p/MY3pkI88Y2pEE98Yyqk71V2mz6uqkTK/jn79Oo7PusCyo/j5J5XXnkls9V3ZPa3+Hv6xo0bizZf+MIXMrtLYQT2kbkYiUos2bZtW2ZfdtllxT48vjt27MjsLiu5cP85IQoofdWFCxdmNq9yC5SJSFxYBCi1Gz6P8qtZ6/j4xz+e2aqoBn9z50rCKoGIz8N6lYq94LFUCWfso/N51Hf6rsU3mviNb0yFeOIbUyGe+MZUiCe+MRXSV3EPyIMhuKIoUIoiLECpNiz6KNGEAzv4OCpQgoVEFstUYg8LRVzJVlWc5WQZ7ptq8+1vfzuzP/3pTxf7sBD04x//OLPPPffcog0H7LAIOmfOnKLNo48+mtl8PRwgo/qmBMDm0lBAWXVIBYCxEMrHUELp6tWrM5vFYhZbgbL/fI0qOIeFOyVOcoAXi85qLJvPpRJsFX7jG1MhnvjGVIgnvjEV0lcff2BgIPOLlS/Ofhv7Ul2CFXgFHHVc9s9VcgMnZ3AwxWmnnVa0YZ9+/vz5mb1hw4aiDesarDeooKWLLroosz/xiU8U+3BBDF7Omv15oAya4WW+FRyAtH79+sxW+glfs0qE4WAuDr5RGgv7xLxk94c+9KGiDfvFHDTG2gKgffjhjgmU+o9a5pv1Ed5HnbfZpmvymd/4xlSIJ74xFeKJb0yF9NXHHz9+fLZKifqO2ZbIoPxdLqCo/Cv2/djvVH4oJ2dw39Q3YU7c4e+yStdgf5e/G6sCkVzsQvl+55xzTmbfc889mc0FI4FSC+HYBaWF8Gq+rCWoBCg+jyqewvELrDcof5Z1F47f2Lx5c9GGE3nWrl2b2eo7Pt8T7ot6NlgrUPeMdQA+jxqn5j06bCvpGGP+9PDEN6ZCPPGNqRBPfGMqpO9JOk2xS62EwkIXCzyqAgwH+ahKttOmTctsDvKZNGlS0YaDWbhi61NPPVW04eOwIKWumSvWcNIIJ5oAZf85WAcAfvSjHw27jzruihUrMpsThpRoxfeERasuyVhKqOMAHQ5m4aWpgTKJiJez3rOnXOmNq+ryctZdRGgWPVUF4C7JS1wZmcVsNU5dV89p4je+MRXiiW9MhXjiG1MhffXx9+/fn/k+KtCGgxy6rETDPqXyeTgwgn0n1Rf2yXiFWlUIohmgBJQVW6+55pqiDfef/Wila3B/eWUa1Rdus2rVqqIN+80cEKMSYzgQiAOfVNAV3yN1z/he8z1UQVdtz4uq7MxFQJYsWZLZXJgDKPUf1ixUcA4H1yh/ne8Z918FczWDerySjjFmSDzxjakQT3xjKqTv3/GbvpAqcMB+Gye1qG+q7BOrffi7d5eCBexv8Uo0KiFi0aJFmc2FN1Tf2D+84oorMlt9e165cmVmK5+SYwbY1+6yWjH71dOnTy/acP9ZB1BJOl2SSfgedSlCyhoFj4sqnsLjwoVEzj777KLN8uXLM5t9caVF8TalffBz2iXeoXncrt/0/cY3pkI88Y2pkNaJHxHHRcRjEfFkRKyPiH/sbT89Ih6NiK0R8b2IKH+3G2PGJF3e+G8BuDildA6AxQAujYjzAXwDwM0ppbkAXgdw3ZHrpjHmcNIq7qVBteCAinJM778E4GIA/623/U4A/wfALW3Ha4o6KtigrYouB9UApYCjljXmbSwsKqGF27DQqKqksjjDwS0qAEZVBW6yc+fOYhv3X4lJzz//fGbzNaqlnFnQ5IovKpiIx4WTT1588cWiDfdfiVZtgUBz584t2vB4szCqBEF+Dnlc1DPJIqh6Lhl+TlXCFo8lV21WgWbNe3RYxb2IGB8R6wDsAfAAgOcA7E0pHRiRXQBKudcYMybpNPFTSgMppcUAZgD4IID5LU3eISKWRcTqiFit3qrGmP5zUKp+SmkvgBUA/hzApIg48PtyBoDy99xgm1tTSktTSkvVd2NjTP9p9fEj4hQAb6eU9kbE8QAuwaCwtwLAVQDuAXAtgHs7HCvzYZRfxD4MB/QoH4Z9MlX4gbfxaimqwAQndLB/e9ZZZxVtHnzwwczmVWZUxVY+Dxf44GISQJmswdV9gbIoCK98q8aSfW2+H1xRFyivkY+rxpbvvQrmYt2C92E9AiifBS5sofQU9uH5uGr1Iw7U4qAfVYiDx1ZVzGUdgMdAPdvNIKuuVXa7RO5NBXBnRIzH4C+Ef0sp3R8RGwDcExH/F8BaALd3OqMxZtTpouo/BWCJ2L4Ng/6+MeYow5F7xlSIJ74xFdLX7Ly3334bu3fvfsdWATxcyZbFDSWIsHikRCsOjGBBTWW38XG56spPf/rToo0SnJqo7Dyu8sr7cOUfoBwXJSa1VSZSAUjchgUpVdmWKxhz0IwaWxZtldDL94xFOBUAwwIsH0P1RT1TbbBIy8uhq6AfFt7UeXlOcGajerab1+wKPMaYIfHEN6ZCPPGNqZC++vjjxo3LgjCUv8Kru3DAhVpmmnUBDlQBSp+LfUrlG3HgDPdFBVPwebiCjbpmDiZilF/N/iGvIAOUPjwHoih/lwNgWDtQSSK8ZDf7u5wspI6jxp8Dg/g4SqPgIB/eR/nefG4eWxVx2pbwpJ6NTZs2Zbaq3st9YR1D6QLNZ7lLZSnAb3xjqsQT35gK8cQ3pkL67uM3v42rghlctIG/VysfmavfKj+I/cXFixdntvq+zjoAn3vbtm1Fm2acAtC+qqo6N/u/qvgFr+iqfMpHHnkks/k7clvRE6AcA5Vww2PL355VbMPLL7+c2aooCGsqHC+gElJYB+CxU88cF+/gvqjEJNZd+LgcmwGU8Q3qnvFY8So/qk1znNQ4KvzGN6ZCPPGNqRBPfGMqxBPfmArpq7g3MDCQVTlVQhFXjWGxQlVQ4SANJYBwUs7TTz+d2VwZFigFKBaXuK8A8NJLL2U2J/ao87zwwguZzZVVVQAJi24sKgKlGMkilkrsYWGRBTR1zW2BTSpAiQOb1PLP3P8LLrggs5Ugy0t8cd9UMhCLkRy4pcafg8Q4cEi14ao9/GwApTjJyUxKnGyOtwqwUviNb0yFeOIbUyGe+MZUSF99/IjIfJCRrMqilml+9tlnM1v5fuzfdimKwNoBr4KjkkR4dRf2iZWPzMka999/f2YrX5CXe1b957HsknDDSR6sw6iVgPg+cmCQSkZhv19V2WV/loNbVP9ZH+FEJK66C5T+OuslShdgzUgtZc4sXLgws1XyFY8Vj1OXKtNd8BvfmArxxDemQjzxjamQvvr4EydOzHxg9pOA8rsr++/sqwNlIo/y/difYv+Xk16A0l9kP1T5dawdcF9UwgrrGLNmzcps/s4PlMkbSi/huAOOS+ACJkAZh8Bjq+IQ+Ls9f6NX+gOPpdqHVyrib/0qPoB1DH7G+PqAUjdiH1/50NxfPo9KgOIVkjhRDABWrlyZ2fw8qVWRm+PvYpvGmCHxxDemQjzxjakQT3xjKqSv4t5bb72VVa1RSSIcwMBinhLuWBBUCR8cDMIiVZckF+6bEuraAl66BNqcc845mb19+/aiDY+Dqq7KlWC5zbx584o2LGTxOKkAEg4w4mtWgiCLVCpIhisHs5in7jMnxzSTwgAturHgx0k7M2bMKNrweLPNyTVA+Qxy34AyQYj3UUE/TTFVJfEo/MY3pkI88Y2pEE98Yyqkrz7+/v37M7+eV805sE8T9r84uAUoq7yqpBY+bpeVXNhfZN9PrerDSSHs86ugJU72YR1g6dKlRZsuq+IwnCDEwVFA6QPzWCpfnGH/VvmyPJZXX311sQ9rFKypqBWT+Jnia+7ybHRZfYc1Cm6jgn74HinthgPJuGCMqizcDIZSf6/wG9+YCvHEN6ZCOk/8iBgfEWsj4v6efXpEPBoRWyPiexFRJlQbY8YkB+PjfxHARgAHlu/8BoCbU0r3RMT/A3AdgFuGO0BEZL60+ibPiS/8XXLt2rVFG/7Oqgod8jb+JsyrkgLld2L20VTCBF8T+8Ts2wJlPANfMxeZBEpf8IEHHij24WQZ/p7Ofw+UMRGsnyhdhn1gHieln1x11VXDngcofXi+ZyoxiX1cbqPiHTjugHUkFbvQlgyjfO22wi4AsHPnzszmmI5Vq1YVbZrjrfqq6PTGj4gZAK4AcFvPDgAXA/iP3i53AvhkpzMaY0adrj/1/xnA3wE48M/lSQD2ppQO/FO/C0BZEwtARCyLiNURsVpFrRlj+k/rxI+IvwKwJ6X0xEhOkFK6NaW0NKW0VH3+Msb0ny4+/ocB/HVEXA7gOAz6+P8CYFJETOi99WcAeHGYYxhjxhCtEz+l9BUAXwGAiLgIwP9KKf1tRPw7gKsA3APgWgD3djlhU/TYsmVL8fdcFYbFGCXosNDStpSwasPBIkApsrFwooJBuOoNB3IocYnFMRaG1OpBXGX3S1/6UrHPE0/kP9L4ejg4BAA2bdqU2VyFSI0tC6csaCoRS4l5DIurLIxy34AysYeDiZS7yYlgaryZKVOmZDYv766SdPg+q77wPizAql/NzeMcVnFvCL4M4H9GxFYM+vy3H8KxjDF95KBCdlNKPwHwk96ftwH44OHvkjHmSOPIPWMqpO9JOk3/TxWyaEuMUX41B/C8+uqrxT5tQSWqL5xQw76rCkBiH61L1dO26r2q4AQH/SifkpN71qxZk9mXXXZZ0aYtKUQVgmC4qMkNN9xQ7MO+6xlnnFHs0yzaApQBU2psOamLfV4VdMVjyUFKSv/hwCA+htJy+NlWyT/cjlfPnT17dtGmOU6usmuMGRJPfGMqxBPfmArpq48/bty4zBdV3xzZd2K/SK02y36RSpBgf73LKrCcuMM+meo/+5BtK+sA5eq+/I1bFb9gHUB9E+YVYtQqRAyPLyeNKB+Zz833TBUJYd1C9Z91F9YXVF94rPh7u/LX+T6yTqA0lq1bt2Y2x1V0WcFWPQttK/KoVZWa51arDstzd9rLGPMnhSe+MRXiiW9MhXjiG1MhfRX3UkqZEKdWWOFEEhZJVJICC2hKDGORpK3qLlAuK837qIQhPg9fjxIeuQ0HgyhBikUcFdh05plnZjYLmmqZbxbiuL9KBOVx+ehHP5rZXZKm1LjwOLBoqCoIsTimKh4xLBryeXbs2FG0ufDCCzN73bp1w/YDKMdJBfCw0MgVipWgORL8xjemQjzxjakQT3xjKqTvSTpNH1EF43AAD/s8KvmBfSdVZZeTF/g4KhiHA0jYR1YroTAcBKT89Ta9QQWDsD6ijstVarnK665du4o2bSvSKv2EE4TOO++8zFbPfTTdAAAF30lEQVRBJbzysArgaQuyUs8PF+dgP1o9G7xCLQfncF+BMpmJ7wePI1DeV6Vr8LPAFX+Vj98cly6BQ4Df+MZUiSe+MRXiiW9MhXjiG1Mhfc/Oawo2nJUGlAIOB+wocY8DRFTwBFflYUFKBfBwX1ggVMtucWAK91e1YcGGhS7VNxbz1Lh85zvfyWwW5lQbHhcOgFEZfp/97Gczm8U8JTix+KWqJvF9ZDFMCYJqrJqoACSu7Lxo0aLM5opCQHvmpuoHBySpADDuCweAqXFqziMVFKTwG9+YCvHEN6ZCPPGNqZC++vgDAwOZP6J8fA4YYR+ny9LUqhIs+4tdVrjh43ZJnuGgEw4YUdVceBzYd1W6wN13353ZyrdrW6S0S9ASB6YsXLiwaMP3iBOGuvi7qnos6yXcpkuVWn5eVGIYV/NlLUet+sMJQkpXYubPn5/ZKoCHnwXWZbpccxf8xjemQjzxjakQT3xjKqTv3/Gb33hH8n1a+TjsY6pVZdi3Y19KHZf9Q/Y51Xm4kAUnjShdgH1K1gFuv71cj5T9d7WCCvuQXRI4+Jp5XJ588smiDWsQHFehqux28ddZH+E2Cr4n7IsrjYj9cz6Gumfse3PCECf+AN20KH6WeeyUP988jr/jG2OGxBPfmArxxDemQjzxjamQvop7+/bty8QWFcDAASS8T5eKswpONulStYeFEu6LCtrgoBgW4VSVYBZwvv/97w/bD6DsvxJ92qoMqfHnfVgQVILsww8/nNmXX355ZitBbc6cOZnN1YKAcuxYQGMhDChFWxbqlMDJwihXH1ZLeHMyDY+l6tvmzZszu8uyYYx6FppBY21JSu/s12kvY8yfFJ74xlSIJ74xFRIqUeOInSzilwC2AzgZQLn0y9jkaOorcHT192jqK3B09HdWSqnMKiL6OvHfOWnE6pTS0r6feAQcTX0Fjq7+Hk19BY6+/g6Hf+obUyGe+MZUyGhN/FtH6bwj4WjqK3B09fdo6itw9PV3SEbFxzfGjC7+qW9MhfR14kfEpRHxbERsjYgb+3nuLkTEHRGxJyKeaWybHBEPRMSW3v9PHO4Y/SIiZkbEiojYEBHrI+KLve1jtb/HRcRjEfFkr7//2Nt+ekQ82nsmvhcR7fHXfSIixkfE2oi4v2eP2b4eLH2b+BExHsC3AFwGYAGAayJiQb/O35F/BXApbbsRwEMppTMBPNSzxwL7ANyQUloA4HwA/703nmO1v28BuDildA6AxQAujYjzAXwDwM0ppbkAXgdw3Sj2kfkigI0Neyz39aDo5xv/gwC2ppS2pZT+COAeAFf28fytpJQeBsDrG18J4M7en+8E8Mm+dmoIUkq7U0pren9+E4MP6HSM3f6mlNJveuYxvf8SgIsB/Edv+5jpb0TMAHAFgNt6dmCM9nUk9HPiTwews2Hv6m0b65yaUjqwhtLLAE4dbufRICJmA1gC4FGM4f72fjqvA7AHwAMAngOwN6V0IOVsLD0T/wzg7wAcSHE8CWO3rweNxb2DIA1+AhlTn0Ei4gQA/wng+pRSVhRwrPU3pTSQUloMYAYGfwHOb2kyKkTEXwHYk1J6YrT7cqToZz7+iwBmNuwZvW1jnVciYmpKaXdETMXg22pMEBHHYHDS35VSOpDEP2b7e4CU0t6IWAHgzwFMiogJvTfpWHkmPgzgryPicgDHAXgvgH/B2OzriOjnG/9xAGf2lNFjAVwN4L4+nn+k3Afg2t6frwVw7yj25R16PuftADamlP6p8Vdjtb+nRMSk3p+PB3AJBnWJFQCu6u02JvqbUvpKSmlGSmk2Bp/T5Smlv8UY7OuISSn17T8AlwPYjEHf7u/7ee6O/bsbwG4Ab2PQh7sOg77dQwC2AHgQwOTR7mevrxdg8Gf8UwDW9f67fAz392wAa3v9fQbAP/S2zwHwGICtAP4dwMTR7iv1+yIA9x8NfT2Y/xy5Z0yFWNwzpkI88Y2pEE98YyrEE9+YCvHEN6ZCPPGNqRBPfGMqxBPfmAr5/3KQtzTXcucVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.imshow(training_data[1][0], cmap = 'gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1., 0.])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data[1][1]"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down

0 comments on commit 487569a

Please sign in to comment.