Skip to content

Commit

Permalink
05
Browse files Browse the repository at this point in the history
  • Loading branch information
SmBito committed Oct 4, 2019
1 parent 15a0ccf commit 9ebad0d
Show file tree
Hide file tree
Showing 5 changed files with 296 additions and 166 deletions.
83 changes: 0 additions & 83 deletions .ipynb_checkpoints/05-checkpoint.ipynb

This file was deleted.

148 changes: 148 additions & 0 deletions .ipynb_checkpoints/05_Convolutional_Neural_Networks-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import cv2\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"REBUILD_DATA = True"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"REBUILD_DATA = True # set to true to one once, then back to false unless you want to change something in your training data.\n",
"\n",
"class DogsVSCats():\n",
" IMG_SIZE = 50\n",
" CATS = \"/Users/Mac/Downloads/kagglecatsanddogs/PetImages/Cat\"\n",
" DOGS = \"/Users/Mac/Downloads/kagglecatsanddogs/PetImages/Dog\"\n",
" TESTING = \"PetImages/Testing\"\n",
" LABELS = {CATS: 0, DOGS: 1}\n",
" training_data = []\n",
"\n",
" catcount = 0\n",
" dogcount = 0\n",
"\n",
" def make_training_data(self):\n",
" for label in self.LABELS:\n",
" print(label)\n",
" for f in tqdm(os.listdir(label)):\n",
" if \"jpg\" in f:\n",
" try:\n",
" path = os.path.join(label, f)\n",
" img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)\n",
" img = cv2.resize(img, (self.IMG_SIZE, self.IMG_SIZE))\n",
" self.training_data.append([np.array(img), np.eye(2)[self.LABELS[label]]]) # do something like print(np.eye(2)[1]), just makes one_hot \n",
" #print(np.eye(2)[self.LABELS[label]])\n",
"\n",
" if label == self.CATS:\n",
" self.catcount += 1\n",
" elif label == self.DOGS:\n",
" self.dogcount += 1\n",
"\n",
" except Exception as e:\n",
" pass\n",
" #print(label, f, str(e))\n",
"\n",
" np.random.shuffle(self.training_data)\n",
" np.save(\"training_data.npy\", self.training_data)\n",
" print('Cats:',dogsvcats.catcount)\n",
" print('Dogs:',dogsvcats.dogcount)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 1%| | 73/12501 [00:00<00:17, 727.44it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"/Users/Mac/Downloads/kagglecatsanddogs/PetImages/Cat\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 12501/12501 [02:44<00:00, 75.80it/s]\n",
" 0%| | 8/12501 [00:00<02:49, 73.78it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"/Users/Mac/Downloads/kagglecatsanddogs/PetImages/Dog\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 12501/12501 [02:22<00:00, 87.59it/s] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cats: 12476\n",
"Dogs: 12470\n"
]
}
],
"source": [
"if REBUILD_DATA:\n",
" dogsvcats = DogsVSCats()\n",
" dogsvcats.make_training_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
83 changes: 0 additions & 83 deletions 05.ipynb

This file was deleted.

Loading

0 comments on commit 9ebad0d

Please sign in to comment.