Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Set batch sizes in unit tests to powers of 2 at least 16 #1054

Merged
merged 1 commit into from
Apr 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions tests/unit/tf/models/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -923,11 +923,11 @@ def test_retrieval_model_query_candidate(ecommerce_data: Dataset, run_eagerly=Tr
assert isinstance(reloaded_model.query_encoder, mm.EmbeddingEncoder)
assert isinstance(reloaded_model.candidate_encoder, mm.EmbeddingEncoder)

queries = model.query_embeddings(ecommerce_data, batch_size=10, index=Tags.USER_ID).compute()
queries = model.query_embeddings(ecommerce_data, batch_size=16, index=Tags.USER_ID).compute()
_check_embeddings(queries, 100, "user_id")

candidates = model.candidate_embeddings(
ecommerce_data, batch_size=10, index=candidate
ecommerce_data, batch_size=16, index=candidate
).compute()
_check_embeddings(candidates, 100, "item_id")

Expand Down
8 changes: 4 additions & 4 deletions tests/unit/tf/models/test_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -898,11 +898,11 @@ def test_two_tower_v2_export_embeddings(

model, _ = testing_utils.model_test(model, ecommerce_data, reload_model=False)

queries = model.query_embeddings(ecommerce_data, batch_size=10, index=Tags.USER_ID).compute()
queries = model.query_embeddings(ecommerce_data, batch_size=16, index=Tags.USER_ID).compute()
_check_embeddings(queries, 100, 8, "user_id")

candidates = model.candidate_embeddings(
ecommerce_data, batch_size=10, index=Tags.ITEM_ID
ecommerce_data, batch_size=16, index=Tags.ITEM_ID
).compute()
_check_embeddings(candidates, 100, 8, "item_id")

Expand All @@ -918,11 +918,11 @@ def test_mf_v2_export_embeddings(

model, _ = testing_utils.model_test(model, ecommerce_data, reload_model=False)

queries = model.query_embeddings(ecommerce_data, batch_size=10, index=Tags.USER_ID).compute()
queries = model.query_embeddings(ecommerce_data, batch_size=16, index=Tags.USER_ID).compute()
_check_embeddings(queries, 100, 8, "user_id")

candidates = model.candidate_embeddings(
ecommerce_data, batch_size=10, index=Tags.ITEM_ID
ecommerce_data, batch_size=16, index=Tags.ITEM_ID
).compute()
_check_embeddings(candidates, 100, 8, "item_id")

Expand Down
4 changes: 2 additions & 2 deletions tests/unit/tf/transformers/test_block.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ def test_transformer_as_classification_model(sequence_testing_data: Dataset, run
batch = loader.peek()[0]

outputs = model(batch)
assert list(outputs.shape) == [50, 63]
assert list(outputs.shape) == [64, 63]
testing_utils.model_test(model, loader, run_eagerly=run_eagerly)


Expand Down Expand Up @@ -223,7 +223,7 @@ def classification_loader(sequence_testing_data: Dataset):
sequence_testing_data.schema = schema
dataloader = mm.Loader(
sequence_testing_data,
batch_size=50,
batch_size=64,
).map(mm.ToTarget(schema, "user_country", one_hot=True))
return dataloader, dataloader.output_schema

Expand Down