Skip to content

Spark NLP 5.2.1: Official support for Apache Spark 3.5, Introducing BGE annotator for Text Embeddings, ONNX support for DeBERTa Token and Sequence Classifications, and Question Answering task, new Databricks 14.x runtimes, Over 400 new state-of-the-art Transformer Models in ONNX, and bug fixes!

Compare
Choose a tag to compare
@maziyarpanahi maziyarpanahi released this 28 Dec 15:29
· 226 commits to master since this release
02ef1a8

πŸ“’ Overview

Spark NLP 5.2.1 πŸš€ comes with full compatibility with Spark/PySpark 3.5, brand new BGEEmbeddings to load BGE models for text embeddings, new ONNX support for DeBertaForTokenClassification, DeBertaForSequenceClassification, and DeBertaForQuestionAnswering annotators. Additionally, we've added over 400 state-of-the-art transformer models in ONNX format to ensure rapid inference for multi-class/multi-label classification models.

We're pleased to announce that our Models Hub now boasts 30,000+ free and truly open-source models & pipelines πŸŽ‰. Our deepest gratitude goes out to our community for their invaluable feedback, feature suggestions, and contributions.


πŸ”₯ New Features & Enhancements

  • NEW: Introducing full support for Apache Spark and PySpark 3.5 that comes with lots of improvements for Spark Connect: https://spark.apache.org/releases/spark-release-3-5-0.html#highlights
  • NEW: Welcoming 6 new Databricks runtimes officially with support for new Spark 3.5:
    • Databricks 14.0
    • Databricks 14.0 ML
    • Databricks 14.0 ML GPU
    • Databricks 14.1
    • Databricks 14.1 ML
    • Databricks 14.1 ML GPU
    • Databricks 14.2
    • Databricks 14.2 ML
    • Databricks 14.2 ML GPU
  • NEW: Introducing the BGEEmbeddings annotator for Spark NLP. This annotator enables the integration of BGE models, based on the BERT architecture, into Spark NLP. The BGEEmbeddings annotator is designed for generating dense vectors suitable for a variety of applications, including retrieval, classification, clustering, and semantic search. Additionally, it is compatible with vector databases used in Large Language Models (LLMs).
  • NEW: Introducing support for ONNX Runtime in DeBertaForTokenClassification annotator
  • NEW: Introducing support for ONNX Runtime in DeBertaForSequenceClassification annotator
  • NEW: Introducing support for ONNX Runtime in DeBertaForQuestionAnswering annotator
  • Add a new notebook to show how to import any model from T5 family into Spark NLP with TensorFlow format
  • Add a new notebook to show how to import any model from T5 family into Spark NLP with ONNX format
  • Add a new notebook to show how to import any model from MarianNMT family into Spark NLP with ONNX format

πŸ› Bug Fixes

  • Fix serialization issue in DocumentTokenSplitter annotator failing to be saved and loaded in a Pipeline
  • Fix serialization issue in DocumentCharacterTextSplitter annotator failing to be saved and loaded in a Pipeline

ℹ️ Known Issues

  • ONNX models crash when they are used in Colab's T4 GPU runtime #14109

πŸ““ New Notebooks

Notebooks
Import T5 models in TensorFlow from HuggingFace πŸ€— into Spark NLP πŸš€
Import T5 models in ONNX from HuggingFace πŸ€— into Spark NLP πŸš€
Import Marian models in ONNX from HuggingFace πŸ€— into Spark NLP πŸš€

πŸ“– Documentation


❀️ Community support

  • Slack For live discussion with the Spark NLP community and the team
  • GitHub Bug reports, feature requests, and contributions
  • Discussions Engage with other community members, share ideas, and show off how you use Spark NLP!
  • Medium Spark NLP articles
  • YouTube Spark NLP video tutorials

Installation

Python

#PyPI

pip install spark-nlp==5.2.1

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x: (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.1

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.1

Apple Silicon (M1 & M2)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.1

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.1

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.1

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.1

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>5.2.1</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>5.2.1</version>
</dependency>

spark-nlp-silicon:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-silicon_2.12</artifactId>
    <version>5.2.1</version>
</dependency>

spark-nlp-aarch64:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>5.2.1</version>
</dependency>

FAT JARs

What's Changed

Full Changelog: 5.2.0...5.2.1