Skip to content

Commit

Permalink
2023-05-19-match_pattern_en (#13805)
Browse files Browse the repository at this point in the history
* Add model 2023-05-19-match_pattern_en

* Add model 2023-05-19-dependency_parse_en

* Add model 2023-05-20-explain_document_md_fr

* Add model 2023-05-20-dependency_parse_en

* Add model 2023-05-20-explain_document_md_it

* Add model 2023-05-20-entity_recognizer_lg_fr

* Add model 2023-05-20-entity_recognizer_md_fr

* Add model 2023-05-20-entity_recognizer_lg_it

* Add model 2023-05-20-entity_recognizer_md_it

* Add model 2023-05-20-check_spelling_en

* Add model 2023-05-20-match_datetime_en

* Add model 2023-05-20-match_pattern_en

* Add model 2023-05-20-clean_pattern_en

* Add model 2023-05-20-clean_stop_en

* Add model 2023-05-20-movies_sentiment_analysis_en

* Add model 2023-05-20-explain_document_ml_en

* Add model 2023-05-20-analyze_sentiment_en

* Add model 2023-05-20-explain_document_dl_en

* Add model 2023-05-20-recognize_entities_dl_en

* Add model 2023-05-20-recognize_entities_bert_en

* Add model 2023-05-20-explain_document_md_de

* Add model 2023-05-21-entity_recognizer_lg_de

* Add model 2023-05-21-entity_recognizer_md_de

* Add model 2023-05-21-onto_recognize_entities_sm_en

* Add model 2023-05-21-onto_recognize_entities_lg_en

* Add model 2023-05-21-match_chunks_en

* Add model 2023-05-21-explain_document_lg_es

* Add model 2023-05-21-explain_document_md_es

* Add model 2023-05-21-explain_document_sm_es

* Add model 2023-05-21-entity_recognizer_lg_es

* Add model 2023-05-21-entity_recognizer_md_es

* Add model 2023-05-21-entity_recognizer_sm_es

* Add model 2023-05-21-explain_document_lg_ru

* Add model 2023-05-21-explain_document_md_ru

* Add model 2023-05-21-explain_document_sm_ru

* Add model 2023-05-21-entity_recognizer_lg_ru

* Add model 2023-05-21-entity_recognizer_md_ru

* Add model 2023-05-21-entity_recognizer_sm_ru

* Add model 2023-05-21-text_cleaning_en

* Add model 2023-05-21-explain_document_lg_pt

* Add model 2023-05-21-explain_document_md_pt

* Add model 2023-05-21-explain_document_sm_pt

* Add model 2023-05-21-entity_recognizer_lg_pt

* Add model 2023-05-21-entity_recognizer_md_pt

* Add model 2023-05-21-entity_recognizer_sm_pt

* Add model 2023-05-21-explain_document_lg_pl

* Add model 2023-05-21-explain_document_md_pl

* Add model 2023-05-21-explain_document_sm_pl

* Add model 2023-05-21-entity_recognizer_lg_pl

* Add model 2023-05-21-entity_recognizer_md_pl

* Add model 2023-05-21-entity_recognizer_sm_pl

* Add model 2023-05-21-explain_document_lg_nl

* Add model 2023-05-21-explain_document_md_nl

* Add model 2023-05-21-explain_document_sm_nl

* Add model 2023-05-21-entity_recognizer_lg_nl

* Add model 2023-05-21-entity_recognizer_md_nl

* Add model 2023-05-21-entity_recognizer_sm_nl

* Add model 2023-05-21-analyze_sentimentdl_glove_imdb_en

* Add model 2023-05-21-explain_document_lg_no

* Add model 2023-05-21-explain_document_md_no

* Add model 2023-05-21-explain_document_sm_no

* Add model 2023-05-21-entity_recognizer_lg_no

* Add model 2023-05-21-entity_recognizer_md_no

* Add model 2023-05-21-entity_recognizer_sm_no

* Add model 2023-05-21-explain_document_lg_sv

* Add model 2023-05-21-explain_document_md_sv

* Add model 2023-05-21-explain_document_sm_sv

* Add model 2023-05-21-entity_recognizer_lg_sv

* Add model 2023-05-21-entity_recognizer_md_sv

* Add model 2023-05-21-entity_recognizer_sm_sv

* Add model 2023-05-21-explain_document_lg_da

* Add model 2023-05-21-explain_document_md_da

* Add model 2023-05-21-explain_document_sm_da

* Add model 2023-05-21-entity_recognizer_lg_da

* Add model 2023-05-21-entity_recognizer_md_da

* Add model 2023-05-21-entity_recognizer_sm_da

* Add model 2023-05-21-explain_document_lg_fi

* Add model 2023-05-21-explain_document_md_fi

* Add model 2023-05-21-explain_document_sm_fi

* Add model 2023-05-21-entity_recognizer_lg_fi

* Add model 2023-05-21-entity_recognizer_md_fi

* Add model 2023-05-21-entity_recognizer_sm_fi

* Add model 2023-05-21-onto_recognize_entities_bert_base_en

* Add model 2023-05-21-onto_recognize_entities_bert_large_en

* Add model 2023-05-21-onto_recognize_entities_bert_medium_en

* Add model 2023-05-21-onto_recognize_entities_bert_mini_en

* Add model 2023-05-21-onto_recognize_entities_bert_small_en

* Add model 2023-05-21-onto_recognize_entities_bert_tiny_en

* Add model 2023-05-21-onto_recognize_entities_electra_base_en

* Add model 2023-05-21-onto_recognize_entities_electra_small_en

* Add model 2023-05-21-onto_recognize_entities_electra_large_en

* Add model 2023-05-21-recognize_entities_dl_fa

* Add model 2023-05-21-nerdl_fewnerd_subentity_100d_pipeline_en

* Add model 2023-05-21-nerdl_fewnerd_100d_pipeline_en

* Add model 2023-05-21-pos_ud_bokmaal_nb

* Add model 2023-05-21-xlm_roberta_large_token_classifier_masakhaner_pipeline_xx

* Add model 2023-05-21-bert_token_classifier_scandi_ner_pipeline_xx

* Add model 2023-05-21-bert_sequence_classifier_trec_coarse_pipeline_en

* Add model 2023-05-21-bert_sequence_classifier_age_news_pipeline_en

* Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeline_is

* Add model 2023-05-21-distilbert_base_token_classifier_masakhaner_pipeline_xx

* Add model 2023-05-21-nerdl_restaurant_100d_pipeline_en

* Add model 2023-05-21-roberta_token_classifier_timex_semeval_pipeline_en

* Add model 2023-05-21-bert_token_classifier_hi_en_ner_pipeline_hi

* Add model 2023-05-21-xlm_roberta_large_token_classifier_hrl_pipeline_xx

* Add model 2023-05-21-spellcheck_dl_pipeline_en

* Add model 2023-05-21-bert_token_classifier_dutch_udlassy_ner_pipeline_nl

* Add model 2023-05-21-xlm_roberta_large_token_classifier_conll03_pipeline_de

* Add model 2023-05-21-roberta_token_classifier_bne_capitel_ner_pipeline_es

* Add model 2023-05-21-roberta_token_classifier_icelandic_ner_pipeline_is

* Add model 2023-05-21-longformer_base_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-longformer_large_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-xlnet_base_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-xlm_roberta_base_token_classifier_ontonotes_pipeline_en

* Add model 2023-05-21-xlm_roberta_base_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-xlnet_large_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-albert_base_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-albert_large_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-albert_xlarge_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-distilroberta_base_token_classifier_ontonotes_pipeline_en

* Add model 2023-05-21-roberta_base_token_classifier_ontonotes_pipeline_en

* Add model 2023-05-21-roberta_large_token_classifier_conll03_pipeline_en

* Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeline_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored May 21, 2023
1 parent de3e19e commit 71de0f7
Show file tree
Hide file tree
Showing 123 changed files with 14,186 additions and 0 deletions.
119 changes: 119 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-dependency_parse_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
---
layout: model
title: Typed Dependency Parsing pipeline for English
author: John Snow Labs
name: dependency_parse
date: 2023-05-19
tags: [pipeline, dependency_parsing, untyped_dependency_parsing, typed_dependency_parsing, laballed_depdency_parsing, unlaballed_depdency_parsing, en, open_source]
task: Dependency Parser
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Typed Dependency parser, trained on the on the CONLL dataset.

Dependency parsing is the task of extracting a dependency parse of a sentence that represents its grammatical structure and defines the relationships between “head” words and words, which modify those heads.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()

```
```scala

val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)

```

{:.nlu-block}
```python

nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")


```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()
```
```scala
val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)
```

{:.nlu-block}
```python
nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")
```
</div>

## Results

```bash
Results


+---------------------------------------------------------------------------------+--------------------------------------------------------+
|result |result |
+---------------------------------------------------------------------------------+--------------------------------------------------------+
|[ROOT, Dependencies, represents, words, relationships, Sentence, Sentence, words]|[root, parataxis, nsubj, amod, nsubj, case, nsubj, flat]|
+---------------------------------------------------------------------------------+--------------------------------------------------------+



{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|dependency_parse|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|23.8 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- PerceptronModel
- DependencyParserModel
- TypedDependencyParserModel
77 changes: 77 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-match_pattern_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
---
layout: model
title: Match Pattern
author: John Snow Labs
name: match_pattern
date: 2023-05-19
tags: [en, open_source]
task: Text Classification
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The match_pattern is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and matches pattrens .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|match_pattern|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|29.1 KB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- RegexMatcherModel
130 changes: 130 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-20-analyze_sentiment_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
---
layout: model
title: Sentiment Analysis pipeline for English
author: John Snow Labs
name: analyze_sentiment
date: 2023-05-20
tags: [open_source, english, analyze_sentiment, pipeline, en]
task: Named Entity Recognition
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The analyze_sentiment is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
and recognizes entities .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")


```
```scala

import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")

```

{:.nlu-block}
```python

import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df

```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```
```scala
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```

{:.nlu-block}
```python
import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df
```
</div>

## Results

```bash
Results


| | text | sentiment |
|---:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
| 0 | Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now! | positive |
{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|analyze_sentiment|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|5.1 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- NorvigSweetingModel
- ViveknSentimentModel
Loading

0 comments on commit 71de0f7

Please sign in to comment.