Skip to content

Commit

Permalink
2023-05-11-distilbart_cnn_12_6_en (#13795)
Browse files Browse the repository at this point in the history
* Add model 2023-05-11-distilbart_cnn_12_6_en

* Add model 2023-05-11-distilbart_cnn_6_6_en

* Add model 2023-05-11-distilbart_xsum_12_6_en

* Add model 2023-05-11-distilbart_xsum_6_6_en

* Add model 2023-05-11-bart_large_cnn_en

* Update 2023-05-11-bart_large_cnn_en.md

* Update 2023-05-11-distilbart_cnn_12_6_en.md

* Update 2023-05-11-distilbart_cnn_6_6_en.md

* Update 2023-05-11-distilbart_xsum_12_6_en.md

* Update 2023-05-11-distilbart_xsum_6_6_en.md

---------

Co-authored-by: prabod <prabod@rathnayaka.me>
Co-authored-by: Maziyar Panahi <maziyar.panahi@iscpif.fr>
  • Loading branch information
3 people authored May 11, 2023
1 parent 04149fb commit de3e19e
Show file tree
Hide file tree
Showing 5 changed files with 426 additions and 0 deletions.
74 changes: 74 additions & 0 deletions docs/_posts/prabod/2023-05-11-bart_large_cnn_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
---
layout: model
title: BART (large-sized model), fine-tuned on CNN Daily Mail
author: John Snow Labs
name: bart_large_cnn
date: 2023-05-11
tags: [bart, summarization, cnn, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

BART model pre-trained on English language, and fine-tuned on [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail). It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository (https://github.com/pytorch/fairseq/tree/master/examples/bart).

Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.

### Model description

BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.

BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_4.4.2_3.0_1683808096812.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_4.4.2_3.0_1683808096812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

You can use this model for text summarization.

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("bart_large_cnn") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("bart_large_cnn")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bart_large_cnn|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|975.3 MB|
86 changes: 86 additions & 0 deletions docs/_posts/prabod/2023-05-11-distilbart_cnn_12_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART CNN
author: John Snow Labs
name: distilbart_cnn_12_6
date: 2023-05-11
tags: [bart, summarization, cnn, distil, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (CNN) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_cnn_12_6_en_4.4.2_3.0_1683807053526.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_cnn_12_6_en_4.4.2_3.0_1683807053526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_cnn_12_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_cnn_12_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_cnn_12_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|870.4 MB|

## Benchmarking

```bash
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
86 changes: 86 additions & 0 deletions docs/_posts/prabod/2023-05-11-distilbart_cnn_6_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART CNN
author: John Snow Labs
name: distilbart_cnn_6_6
date: 2023-05-11
tags: [bart, summarization, cnn, distil, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (CNN) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_cnn_6_6_en_4.4.2_3.0_1683807295608.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_cnn_6_6_en_4.4.2_3.0_1683807295608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_cnn_6_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_cnn_6_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_cnn_6_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|551.9 MB|

## Benchmarking

```bash
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
90 changes: 90 additions & 0 deletions docs/_posts/prabod/2023-05-11-distilbart_xsum_12_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART XSUM
author: John Snow Labs
name: distilbart_xsum_12_6
date: 2023-05-11
tags: [bart, summarization, text_to_text, xsum, distil, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (XSum) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_4.4.2_3.0_1683807498835.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_4.4.2_3.0_1683807498835.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_xsum_12_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_xsum_12_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_xsum_12_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|733.7 MB|

## References

https://huggingface.co/sshleifer/distilbart-xsum-12-6

## Benchmarking

```bash
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
Loading

0 comments on commit de3e19e

Please sign in to comment.