-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2024-10-21-bge_medembed_small_v0_1_en (#14440)
* Add model 2024-10-21-bge_medembed_small_v0_1_en * Add model 2024-10-21-bge_medembed_large_v0_1_en * Add model 2024-10-21-bge_medembed_base_v0_1_en --------- Co-authored-by: Cabir40 <cabir4006@gmail.com>
- Loading branch information
1 parent
555e800
commit 6b5e175
Showing
3 changed files
with
303 additions
and
0 deletions.
There are no files selected for viewing
101 changes: 101 additions & 0 deletions
101
docs/_posts/Cabir40/2024-10-21-bge_medembed_base_v0_1_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
--- | ||
layout: model | ||
title: English bge_medembed_base_v0_1 BGEEmbeddings from abhinand | ||
author: John Snow Labs | ||
name: bge_medembed_base_v0_1 | ||
date: 2024-10-21 | ||
tags: [embedding, en, open_source, bge, medical, onnx] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.5.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: onnx | ||
annotator: BGEEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BGEEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. | ||
`bge_medembed_base_v0_1` is a English model originally trained by abhinand | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bge_medembed_base_v0_1_en_5.5.0_3.0_1729515433167.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bge_medembed_base_v0_1_en_5.5.0_3.0_1729515433167.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler()\ | ||
.setInputCol("text")\ | ||
.setOutputCol("document") | ||
|
||
embeddings = BGEEmbeddings.pretrained("bge_medembed_base_v0_1","en")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline( | ||
stages = [ | ||
document_assembler, | ||
embeddings | ||
]) | ||
|
||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val embeddings = BGEEmbeddings.pretrained("bge_medembed_base_v0_1","en") | ||
.setInputCols(Array("document")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings)) | ||
|
||
val data = Seq("I love spark-nlp").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
## Results | ||
|
||
```bash | ||
|
||
+----------------------------------------------------------------------------------------------------+ | ||
| bge_embedding| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|[{sentence_embeddings, 0, 15, I love spark-nlp, {sentence -> 0}, [-0.018065551, -0.032784615, 0.0...| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|
||
``` | ||
{:.model-param} | ||
## Model Information | ||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bge_medembed_base_v0_1| | ||
|Compatibility:|Spark NLP 5.5.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[document]| | ||
|Output Labels:|[bge]| | ||
|Language:|en| | ||
|Size:|389.7 MB| |
101 changes: 101 additions & 0 deletions
101
docs/_posts/Cabir40/2024-10-21-bge_medembed_large_v0_1_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
--- | ||
layout: model | ||
title: English bge_medembed_large_v0_1 BGEEmbeddings from abhinand | ||
author: John Snow Labs | ||
name: bge_medembed_large_v0_1 | ||
date: 2024-10-21 | ||
tags: [embedding, en, open_source, bge, medical, onnx] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.5.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: onnx | ||
annotator: BGEEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BGEEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. | ||
`bge_medembed_large_v0_1` is a English model originally trained by abhinand | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bge_medembed_large_v0_1_en_5.5.0_3.0_1729515260623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bge_medembed_large_v0_1_en_5.5.0_3.0_1729515260623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler()\ | ||
.setInputCol("text")\ | ||
.setOutputCol("document") | ||
|
||
embeddings = BGEEmbeddings.pretrained("bge_medembed_large_v0_1","en")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline( | ||
stages = [ | ||
document_assembler, | ||
embeddings | ||
]) | ||
|
||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val embeddings = BGEEmbeddings.pretrained("bge_medembed_large_v0_1","en") | ||
.setInputCols(Array("document")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings)) | ||
|
||
val data = Seq("I love spark-nlp").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
## Results | ||
|
||
```bash | ||
|
||
+----------------------------------------------------------------------------------------------------+ | ||
| bge_embedding| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|[{sentence_embeddings, 0, 15, I love spark-nlp, {sentence -> 0}, [-0.018065551, -0.032784615, 0.0...| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|
||
``` | ||
{:.model-param} | ||
## Model Information | ||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bge_medembed_large_v0_1| | ||
|Compatibility:|Spark NLP 5.5.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[document]| | ||
|Output Labels:|[bge]| | ||
|Language:|en| | ||
|Size:|1.2 GB| |
101 changes: 101 additions & 0 deletions
101
docs/_posts/Cabir40/2024-10-21-bge_medembed_small_v0_1_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
--- | ||
layout: model | ||
title: English bge_medembed_small_v0_1 BGEEmbeddings from abhinand | ||
author: John Snow Labs | ||
name: bge_medembed_small_v0_1 | ||
date: 2024-10-21 | ||
tags: [embedding, en, open_source, bge, medical, onnx] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.5.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: onnx | ||
annotator: BGEEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BGEEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. | ||
`bge_medembed_small_v0_1` is a English model originally trained by abhinand | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bge_medembed_small_v0_1_en_5.5.0_3.0_1729513920928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bge_medembed_small_v0_1_en_5.5.0_3.0_1729513920928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler()\ | ||
.setInputCol("text")\ | ||
.setOutputCol("document") | ||
|
||
embeddings = BGEEmbeddings.pretrained("bge_medembed_small_v0_1","en")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline( | ||
stages = [ | ||
document_assembler, | ||
embeddings | ||
]) | ||
|
||
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val embeddings = BGEEmbeddings.pretrained("bge_medembed_small_v0_1","en") | ||
.setInputCols(Array("document")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings)) | ||
|
||
val data = Seq("I love spark-nlp").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
## Results | ||
|
||
```bash | ||
|
||
+----------------------------------------------------------------------------------------------------+ | ||
| bge_embedding| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|[{sentence_embeddings, 0, 15, I love spark-nlp, {sentence -> 0}, [-0.07673764, -0.04207312, 0.026...| | ||
+----------------------------------------------------------------------------------------------------+ | ||
|
||
``` | ||
{:.model-param} | ||
## Model Information | ||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bge_medembed_small_v0_1| | ||
|Compatibility:|Spark NLP 5.5.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[document]| | ||
|Output Labels:|[bge]| | ||
|Language:|en| | ||
|Size:|116.4 MB| |