Skip to content

Commit

Permalink
2024-09-26-bert_base_uncased_offenseval2019_upsample_en (#14419)
Browse files Browse the repository at this point in the history
* Add model 2024-09-25-bert_base_uncased_finetuned_toxic_comment_detection_ws23_en

* Add model 2024-09-26-bert_suicide_detection_hk_large_pipeline_en

* Add model 2024-09-26-emb_crossenc_msmarco_teacher_3_bert_large_wwm_pipeline_en

* Add model 2024-09-24-mymodel_pipeline_en

* Add model 2024-09-22-burmese_fine_tuned_distilbert_lr_1e_05_pipeline_en

* Add model 2024-09-25-tvcg_entity_classify_pipeline_en

* Add model 2024-09-27-bert_base_qqp_pipeline_en

* Add model 2024-09-25-detoxify_toxic_english_en

* Add model 2024-09-25-yahoo1_en

* Add model 2024-09-26-hing_mbert_ours_rundi_5_pipeline_en

* Add model 2024-09-25-bert_large_uncased_deletion_multiclass_complete_final_v2_pipeline_en

* Add model 2024-09-26-dbpedia_classes_bert_base_uncased_few_10_baseline_en

* Add model 2024-09-26-arabglossbert_ar

* Add model 2024-09-23-burmese_awesome_model_tsibbett_en

* Add model 2024-09-25-sent_bert_base_uncased_finetuned_imdb_rman_rahimi_29_pipeline_en

* Add model 2024-09-23-distilbert_base_uncased_odm_zphr_0st21sd_pipeline_en

* Add model 2024-09-25-fine_tuned_bert_czech_wikann_pipeline_en

* Add model 2024-09-27-cold_fusion_bert_base_uncased_itr2_seed0_pipeline_en

* Add model 2024-09-27-bert_base_qqp_en

* Add model 2024-09-27-hyp_only_hum_filtered_en

* Add model 2024-09-22-bert_large_uncased_whole_word_masking_finetuned_squad_ozlemsenel_pipeline_en

* Add model 2024-09-26-bert_base_uncased_finetuned_wnli_sujatha2502_pipeline_en

* Add model 2024-09-26-trac2020_eng_a_bert_base_uncased_en

* Add model 2024-09-25-nameattrsbertfinal_en

* Add model 2024-09-26-bert_base_uncased_news_about_gold_pipeline_en

* Add model 2024-09-26-cold_fusion_bert_base_uncased_itr8_seed0_pipeline_en

* Add model 2024-09-26-memo_bert_wsd_old_da

* Add model 2024-09-25-bert_sanskrit_saskta_test_pipeline_en

* Add model 2024-09-25-bert_base_casedepoch3_sexist_baseline_with_reddit_and_gabfortest_en

* Add model 2024-09-24-finetuning_sentiment_model_3000_samples_pxuan_pipeline_en

* Add model 2024-09-26-bert_43_multilabel_emotion_detection_pipeline_en

* Add model 2024-09-26-imdb_bert_5e_en

* Add model 2024-09-26-bert_base_chinese_covid19_en

* Add model 2024-09-26-bert_base_uncased_classification_flat_pipeline_en

* Add model 2024-09-26-bert_large_cased_mnli_model3_pipeline_en

* Add model 2024-09-26-bert_base_uncased_hoax_classifier_v3_defs_pipeline_en

* Add model 2024-09-25-valueeval24_bert_baseline_english_pipeline_en

* Add model 2024-09-25-clickbait_spanish_es

* Add model 2024-09-25-savedaftertrainingtest39_pipeline_en

* Add model 2024-09-26-bert_base_uncased_emotions_augmented_pipeline_en

* Add model 2024-09-14-riskanalysis_albert_base_v2_pipeline_en

* Add model 2024-09-19-guaran_bert_tiny_cased_pipeline_gn

* Add model 2024-09-26-bert_base_uncased_legal_ic_pipeline_en

* Add model 2024-09-24-sent_bert_base_arabert_finetuned_mdeberta_tswana_pipeline_en

* Add model 2024-09-26-trac2020_eng_b_bert_base_uncased_pipeline_en

* Add model 2024-09-20-roberta_base_disaster_tweets_downpour_pipeline_en

* Add model 2024-09-27-comment_bert_subject_pipeline_en

* Add model 2024-09-25-bert_finetuned_age_en

* Add model 2024-09-27-qp_mscoco_sbert_lr5e_5_en

* Add model 2024-09-27-notdiamond_4k_0001_xx

* Add model 2024-09-25-newsbert_pipeline_en

* Add model 2024-09-26-ad_kd_bert_base_uncased_qnli_en

* Add model 2024-09-23-burmese_awesome_model_fhjhl_en

* Add model 2024-09-25-bert_base_uncased_finetuned_sst2_minseok0809_en

* Add model 2024-09-25-bert_amazon_product_classification_small_data_epoch_2_en

* Add model 2024-09-26-bert_classification_emotion_persian_en

* Add model 2024-09-25-biobert_huner_disease_v1_en

* Add model 2024-09-22-sent_bert_base_uncased_dstc9_en

* Add model 2024-09-25-somali_what_en

* Add model 2024-09-27-bert_large_portuguese_cased_faquad_nli_pt

* Add model 2024-09-25-l_12_h_512_a_8_sst2_pipeline_en

* Add model 2024-09-27-hatexplain_majority_relabeled_pipeline_en

* Add model 2024-09-25-bert_base_case_ner_en

* Add model 2024-09-27-bert_base_uncased_finetuned_cola_eceersoyy_en

* Add model 2024-09-19-legal_longformer_base_8192_spanish_pipeline_en

* Add model 2024-09-26-paraphrase_detection_bert_en

* Add model 2024-09-11-babyberta_childes_2_5_0_1_finetuned_squad1_en

* Add model 2024-09-26-bert_base_chinese_climate_risk_opportunity_prediction_3_pipeline_en

* Add model 2024-09-26-bert_base_uncased_ag_news_finetuned_2_pipeline_en

* Add model 2024-09-27-legal_bert_samoan_gen1_large_summarized_defined_chuvash_3_pipeline_en

* Add model 2024-09-25-learn2therm_en

* Add model 2024-09-26-bert_rte_distilled_cka_pipeline_en

* Add model 2024-09-27-cold_fusion_bert_base_uncased_itr18_seed0_pipeline_en

* Add model 2024-09-25-bert_base_cased_ft6_3ep_s42_2_pipeline_en

* Add model 2024-09-25-autotrain_bertbase_imdb_1275748793_en

* Add model 2024-09-27-burmese_bert_model_pipeline_en

* Add model 2024-09-27-init_bert_ft_qqp_33_en

* Add model 2024-09-19-mlm_finetunedmodel_test_pipeline_en

* Add model 2024-09-25-aak_bert_base_cased_cpc_ricardo_talavera_pipeline_en

* Add model 2024-09-26-google_bert_bert_base_uncased_classification_finetuned_en

* Add model 2024-09-25-tos_bert_pipeline_en

* Add model 2024-09-26-phrasebank_sentiment_analysis_eusojk_pipeline_en

* Add model 2024-09-25-bert_base_uncased_hoax_classifier_fulltext_1h2r_pipeline_en

* Add model 2024-09-26-spanish_offensive_language_bert_base_spanish_wwm_cased_es

* Add model 2024-09-26-moviebertreview_sentimentprediction_model_afia_manubea_en

* Add model 2024-09-26-bert_base_rte_en

* Add model 2024-09-23-lnm_ner_pipeline_en

* Add model 2024-09-27-boss_sentiment_24000_bert_base_uncased_en

* Add model 2024-09-25-xlm_roberta_base_irumozhi_ta

* Add model 2024-09-26-n_bert_agnews_padding60model_pipeline_en

* Add model 2024-09-20-model_jbinek_pipeline_en

* Add model 2024-09-26-bert_base_cased_english_sentweet_profane_pipeline_en

* Add model 2024-09-26-parlbert_classify_climate_v01_pipeline_en

* Add model 2024-09-23-distilbert_base_uncased_finetuned_emotion_aiekek_en

* Add model 2024-09-26-bert_base_banking77_pt2_sajjadamjad_en

* Add model 2024-09-25-bert_base_german_cased_archaeo_ner_de

* Add model 2024-09-24-distilbert_base_uncased_finetuned_emotion_saranghae_en

* Add model 2024-09-26-bert_large_uncased_sentiment_en

* Add model 2024-09-26-sentiment_model_saagie_en

* Add model 2024-09-26-bert_base_uncased_finetuned_cola_alemdarberk_pipeline_en

* Add model 2024-09-26-bert_base_uncased_emotion_mooncrescent_pipeline_en

* Add model 2024-09-26-bert_base_chinese_climate_related_prediction_v6_pipeline_en

* Add model 2024-09-23-sent_bert_large_cased_sigir_support_refute_norwegian_label_40_2nd_test_lr10_8_fast_14_pipeline_en

* Add model 2024-09-26-phrasebank_sentiment_analysis_priyabrata018_pipeline_en

* Add model 2024-09-27-romanian_sentiment_01_pipeline_en

* Add model 2024-09-27-bert_base_chinese_3060textsort_pipeline_en

* Add model 2024-09-23-fine_tune_whisper_small_sania67_pipeline_en

* Add model 2024-09-26-hatebert_hate_offensive_normal_speech_lr_2e_05_en

* Add model 2024-09-27-bert_base_year_classifier_pipeline_en

* Add model 2024-09-26-bert_base_malayalam_politics_en

* Add model 2024-09-27-bert_base_multilingual_uncased_hate_speech_ben_hin_pipeline_xx

* Add model 2024-09-27-dsm_509_assignment_sentiment_analysis_bert_siva_gowtham_pipeline_en

* Add model 2024-09-23-xlm_roberta_base_tweet_sentiment_italian_trimmed_italian_15000_pipeline_en

* Add model 2024-09-26-bert_finetuned_mrpc_jkassemi_pipeline_en

* Add model 2024-09-26-gibberish_sentence_detection_model_turkish_tr

* Add model 2024-09-26-bert_base_uncased_relevance_extractor_secondary_binary_pipeline_en

* Add model 2024-09-26-bert_drug_review_tonga_tonga_islands_condition_pipeline_en

* Add model 2024-09-26-m3_deeplearning_pipeline_en

* Add model 2024-09-26-bert_base_spanish_wwm_uncased_finetuned_meia_analisisdesentimientos_jumartineze_pipeline_en

* Add model 2024-09-26-legal_bert_base_uncased_5_epochs_fine_tune_pipeline_en

* Add model 2024-09-26-cross_encoder_roberta_wwm_ext_large_pipeline_zh

* Add model 2024-09-27-bert_base_german_cased_gnad10_finetuned_tagesschau_subcategories_en

* Add model 2024-09-26-bert_base_multilingual_cased_csfever_nearestp_xx

* Add model 2024-09-24-mbert_argmining_abstrct_english_spanish_es

* Add model 2024-09-27-n_bert_agnews_padding50model_pipeline_en

* Add model 2024-09-24-bert_base_uncased_ep_5_02_b_32_lr_1_2e_06_dp_0_3_swati_900_southern_sotho_false_fh_true_hs_0_en

* Add model 2024-09-26-bert_base_arabertv2_1_en

* Add model 2024-09-26-sentimen_analysis_yelp_pipeline_en

* Add model 2024-09-26-bert_base_cased_snli_model4_pipeline_en

* Add model 2024-09-23-distilbert_base_uncased_finetuned_emotion_harukai_pipeline_en

* Add model 2024-09-25-sent_melayubert_pipeline_ms

* Add model 2024-09-25-bert_finetuned_hausa_ner_en

* Add model 2024-09-26-bert_base_uncased_tesla_ic_pipeline_en

* Add model 2024-09-27-init_bert_ft_qqp_33_pipeline_en

* Add model 2024-09-25-sarcasm_detection_bert_base_uncased_cree_pipeline_en

* Add model 2024-09-25-bengali_topic_all_doc_pipeline_bn

* Add model 2024-09-26-bertbase_uncased_2_actual_pipeline_en

* Add model 2024-09-23-fine_tuned_decoder_pipeline_en

* Add model 2024-09-21-distilbert4_en

* Add model 2024-09-25-legalis_bert_de

* Add model 2024-09-26-cs431_camera_coqe_csi_en

* Add model 2024-09-24-bert_distilled_twitter_sent140_dataset_hp_optimized_en

* Add model 2024-09-26-bert_ft_cola_41_pipeline_en

* Add model 2024-09-26-bert_base_uncased_finetuned_imdb_hazardous_en

* Add model 2024-09-26-bert_base_uncased_v1_en

* Add model 2024-09-19-bge_large_eedi_2024_pipeline_en

* Add model 2024-09-26-out_glue_mrpc_pipeline_en

* Add model 2024-09-25-chilean_spanish_hate_speech_es

* Add model 2024-09-26-boss_toxicity_6000_bert_base_uncased_en

* Add model 2024-09-27-bert_base_phia_test_pipeline_en

* Add model 2024-09-26-finetuned_bert_base_on_iemocap_5_pipeline_en

* Add model 2024-09-23-distilbert_base_uncased_finetuned_emotion_aiekek_pipeline_en

* Add model 2024-09-25-bert_base_multilingual_uncased_akazi_xx

* Add model 2024-09-25-bert_base_multilingual_uncased_sentiment_eternaut_pipeline_xx

* Add model 2024-09-25-n_bert_twitterfin_padding90model_en

* Add model 2024-09-26-bert_base_culinary_en

* Add model 2024-09-26-response_quality_classifier_base_pipeline_ru

* Add model 2024-09-26-bert_base_uncased_finetuned_dmitva_ai_and_human_generated_en

* Add model 2024-09-22-mentalroberta_empai_final2_en

* Add model 2024-09-24-distilbert_base_multilingual_cased_sent_negativo_esp_xx

* Add model 2024-09-26-mod4team5_en

* Add model 2024-09-27-bert_restaurant_review_pipeline_en

* Add model 2024-09-26-burmese_bert_fine_tuned_psh3_en

* Add model 2024-09-27-belief_classifier_mturk_unmarked_trigger_bert_base_cased_2023_4_26_0_34_en

* Add model 2024-09-25-legal_ner_finetuned_pipeline_en

* Add model 2024-09-26-dummy_model_hefeng0_en

* Add model 2024-09-26-finbertselftrain_pipeline_en

* Add model 2024-09-26-bert_base_uncased_ft_google_pipeline_en

* Add model 2024-09-26-family_categorization_pipeline_en

* Add model 2024-09-26-bert_base_cased_paraphrase_classification_pipeline_en

* Add model 2024-09-26-bert_base_uncased_finetuned_emotion_forna_en

* Add model 2024-09-25-danish_bert_pipeline_en

* Add model 2024-09-25-aes_enem_models_sourcea_regression_from_bertimbau_large_c5_pipeline_en

* Add model 2024-09-27-distillbert_distilled_ag_news_2_pipeline_en

* Add model 2024-09-26-english_astitchtask1a_bertbaseuncased_falsetrue_0_0_best_pipeline_en

* Add model 2024-09-25-chinese_roberta_climate_related_prediction_v1_en

* Add model 2024-09-26-parsbert_finetuned_pipeline_en

* Add model 2024-09-27-albert_chinese_base_text_classification_en

* Add model 2024-09-26-bert_large_cased_mnli_model3_en

* Add model 2024-09-27-bert_base_banking77_pt2_eoeelocr_pipeline_en

* Add model 2024-09-24-finetuning_sentiment_model_3000_samples_jbnextnext_en

* Add model 2024-09-27-popbert_pipeline_de

* Add model 2024-09-22-frugalscore_medium_deberta_bert_score_pipeline_en

* Add model 2024-09-20-finetuning_imdb_sentiment_model_3000_samples_rahulgaikwad007_en

* Add model 2024-09-26-results_profoz_pipeline_en

* Add model 2024-09-26-bert_base_multilingual_cased_finetuned_papluca_pipeline_xx

* Add model 2024-09-24-minilm_emotions_finetuned_en

* Add model 2024-09-27-bert_base_uncased_finetuned_cola_dropout_0_5_en

* Add model 2024-09-24-roberta_qa_quales_iberlef_pipeline_en

* Add model 2024-09-26-bert_base_uncased_finetuned_mrpc_amrezkazemi_pipeline_en

* Add model 2024-09-26-latdistilledmodel_en

* Add model 2024-09-26-bert_base_uncased_finetuned_mnli_rte_wnli_5_en

* Add model 2024-09-27-fakenews_bert_base_cased_emoji_en

* Add model 2024-09-25-bert_base_cased_ner_chuvash_med_ft_pipeline_en

* Add model 2024-09-24-distilbert_sanskrit_saskta_glue_experiment_logit_kd_data_aug_mrpc_96_en

* Add model 2024-09-25-re2g_reranker_fever_en

* Add model 2024-09-26-i04_pc_pipeline_en

* Add model 2024-09-26-albert_kor_base_finetuned_classfication_pipeline_en

* Add model 2024-09-26-n_bert_sst5_padding50model_pipeline_en

* Add model 2024-09-26-moviebertreview_sentimentprediction_model_kabanda18_pipeline_en

* Add model 2024-09-26-fine_tuned_cb_bert_en

* Add model 2024-09-25-bert_base_banking77_pt2_lugrenl_en

* Add model 2024-09-26-model_nimmyhbas_en

* Add model 2024-09-24-camembert_embeddings_Sonny_generic_model_pipeline_fr

* Add model 2024-09-26-bert_sst2_padding10model_en

* Add model 2024-09-26-bert_base_uncased_header_plus_textsim_en

* Add model 2024-09-26-bert_reviews_chadia_en

* Add model 2024-09-26-n_bert_agnews_padding40model_en

* Add model 2024-09-26-log_classifier_pipeline_en

* Add model 2024-09-25-bert_base_banking77_pt2_jy_pipeline_en

* Add model 2024-09-27-bert_base_german_cased_gnad10_finetuned_tagesschau_subcategories_pipeline_en

* Add model 2024-09-23-distilbert_base_uncased_odm_zphr_0st42sd_ut72ut1_plprefix0stlarge41_simsp_pipeline_en

* Add model 2024-09-26-bert_base_cased_greecewildfire_pipeline_en

* Add model 2024-09-26-bert_base_uncased_8_200_0_01_en

* Add model 2024-09-19-sent_bert_large_ct_en

* Add model 2024-09-23-distilbert_nbx_all_l_en

* Add model 2024-09-26-bert_base_uncased_cola_epochs_10_lr_5e_05_en

* Add model 2024-09-25-cares_bert_base_pipeline_en

* Add model 2024-09-26-bert_base_malayalam_politics_pipeline_en

* Add model 2024-09-15-teamim_tiny_weightdecay_0_05_augmented_nepal_bhasa_data_date_10_07_2024_13_20_pipeline_he

* Add model 2024-09-25-bert_base_cased_mnli_model7_pipeline_en

* Add model 2024-09-27-bert_mini_emotion_classifier_pipeline_en

* Add model 2024-09-25-sent_bert_large_portuguese_cased_legal_tsdae_pt

* Add model 2024-09-26-reviewusefulness_multiclassclassification_pipeline_de

* Add model 2024-09-21-distilbert_base_uncased_banking_zphr_0st72_ut52ut1_plain_simsp_en

* Add model 2024-09-26-turkqp_en

* Add model 2024-09-26-arabertv2_fully_supervised_arabic_propaganda_pipeline_en

* Add model 2024-09-26-bert_base_uncased_finetuned_m_avoid_harm_seler_pipeline_en

* Add model 2024-09-27-google_query_rating_en

* Add model 2024-09-26-bert_base_portuguese_cased_assin2_entailment_pipeline_pt

* Add model 2024-09-26-bert_base_uncased_emotion_fituned_en

* Add model 2024-09-25-english_astitchtask1a_bertbasecased_falsetrue_0_3_best_pipeline_en

* Add model 2024-09-27-bert_base_nli_theseus_bulgarian_pipeline_bg

* Add model 2024-09-22-sharif_pors_bert_base_sharif_qa_en

* Add model 2024-09-19-emotions_en

* Add model 2024-09-22-whisper_small_hre3_en

* Add model 2024-09-26-cn_bert_sci_pipeline_en

* Add model 2024-09-25-tupi_bert_base_portuguese_cased_multiclass_multilabel_pipeline_en

* Add model 2024-09-25-bert_classifier_tuned_pipeline_en

* Add model 2024-09-27-bert_base_uncased_llm_detect_ai_pipeline_en

* Add model 2024-09-27-bert_base_uncased_finetuned_sst2_xuyi499307483_pipeline_en

* Add model 2024-09-25-bert_finnish_sentiment_analysis_en

* Add model 2024-09-27-bert_base_banking77_pt2_szilard_pipeline_en

* Add model 2024-09-26-bert_base_uncased_agnews_pipeline_en

* Add model 2024-09-21-whisper_small_russian_lorenzoncina_pipeline_ru

* Add model 2024-09-24-discourse_model_en

* Add model 2024-09-26-marathi_topic_all_doc_mr

* Add model 2024-09-20-twitter_roberta_base_mar2021_en

* Add model 2024-09-26-albert_kor_base_finetuned_ynat_pipeline_en

* Add model 2024-09-25-text_classification_medical_pipeline_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Sep 28, 2024
1 parent efb891c commit 555e800
Show file tree
Hide file tree
Showing 1,316 changed files with 107,605 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
---
layout: model
title: English dummy_model_jbao8899_pipeline pipeline CamemBertEmbeddings from jbao8899
author: John Snow Labs
name: dummy_model_jbao8899_pipeline
date: 2024-09-09
tags: [en, open_source, pipeline, onnx]
task: Embeddings
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained CamemBertEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dummy_model_jbao8899_pipeline` is a English model originally trained by jbao8899.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dummy_model_jbao8899_pipeline_en_5.5.0_3.0_1725852224773.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dummy_model_jbao8899_pipeline_en_5.5.0_3.0_1725852224773.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

pipeline = PretrainedPipeline("dummy_model_jbao8899_pipeline", lang = "en")
annotations = pipeline.transform(df)

```
```scala

val pipeline = new PretrainedPipeline("dummy_model_jbao8899_pipeline", lang = "en")
val annotations = pipeline.transform(df)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|dummy_model_jbao8899_pipeline|
|Type:|pipeline|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|264.0 MB|

## References

https://huggingface.co/jbao8899/dummy-model

## Included Models

- DocumentAssembler
- TokenizerModel
- CamemBertEmbeddings
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
---
layout: model
title: English burmese_awesome_qa_model_jleung1618_pipeline pipeline DistilBertForQuestionAnswering from JLeung1618
author: John Snow Labs
name: burmese_awesome_qa_model_jleung1618_pipeline
date: 2024-09-10
tags: [en, open_source, pipeline, onnx]
task: Question Answering
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForQuestionAnswering, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_qa_model_jleung1618_pipeline` is a English model originally trained by JLeung1618.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_qa_model_jleung1618_pipeline_en_5.5.0_3.0_1725960567292.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_qa_model_jleung1618_pipeline_en_5.5.0_3.0_1725960567292.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

pipeline = PretrainedPipeline("burmese_awesome_qa_model_jleung1618_pipeline", lang = "en")
annotations = pipeline.transform(df)

```
```scala

val pipeline = new PretrainedPipeline("burmese_awesome_qa_model_jleung1618_pipeline", lang = "en")
val annotations = pipeline.transform(df)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|burmese_awesome_qa_model_jleung1618_pipeline|
|Type:|pipeline|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|247.2 MB|

## References

https://huggingface.co/JLeung1618/my_awesome_qa_model

## Included Models

- MultiDocumentAssembler
- DistilBertForQuestionAnswering
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: English babyberta_childes_2_5_0_1_finetuned_squad1 RoBertaForQuestionAnswering from lielbin
author: John Snow Labs
name: babyberta_childes_2_5_0_1_finetuned_squad1
date: 2024-09-11
tags: [en, open_source, onnx, question_answering, roberta]
task: Question Answering
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
engine: onnx
annotator: RoBertaForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained RoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`babyberta_childes_2_5_0_1_finetuned_squad1` is a English model originally trained by lielbin.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/babyberta_childes_2_5_0_1_finetuned_squad1_en_5.5.0_3.0_1726062103211.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/babyberta_childes_2_5_0_1_finetuned_squad1_en_5.5.0_3.0_1726062103211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = MultiDocumentAssembler() \
.setInputCol(["question", "context"]) \
.setOutputCol(["document_question", "document_context"])

spanClassifier = RoBertaForQuestionAnswering.pretrained("babyberta_childes_2_5_0_1_finetuned_squad1","en") \
.setInputCols(["document_question","document_context"]) \
.setOutputCol("answer")

pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new MultiDocumentAssembler()
.setInputCol(Array("question", "context"))
.setOutputCol(Array("document_question", "document_context"))

val spanClassifier = RoBertaForQuestionAnswering.pretrained("babyberta_childes_2_5_0_1_finetuned_squad1", "en")
.setInputCols(Array("document_question","document_context"))
.setOutputCol("answer")

val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|babyberta_childes_2_5_0_1_finetuned_squad1|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|en|
|Size:|32.0 MB|

## References

https://huggingface.co/lielbin/babyberta-CHILDES_2.5-0.1-finetuned-SQuAD1
86 changes: 86 additions & 0 deletions docs/_posts/ahmedlone127/2024-09-11-roberta_teste_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: English roberta_teste RoBertaForQuestionAnswering from oGabrielFreitas
author: John Snow Labs
name: roberta_teste
date: 2024-09-11
tags: [en, open_source, onnx, question_answering, roberta]
task: Question Answering
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
engine: onnx
annotator: RoBertaForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained RoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`roberta_teste` is a English model originally trained by oGabrielFreitas.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_teste_en_5.5.0_3.0_1726036404321.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/roberta_teste_en_5.5.0_3.0_1726036404321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

documentAssembler = MultiDocumentAssembler() \
.setInputCol(["question", "context"]) \
.setOutputCol(["document_question", "document_context"])

spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_teste","en") \
.setInputCols(["document_question","document_context"]) \
.setOutputCol("answer")

pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)

```
```scala

val documentAssembler = new MultiDocumentAssembler()
.setInputCol(Array("question", "context"))
.setOutputCol(Array("document_question", "document_context"))

val spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_teste", "en")
.setInputCols(Array("document_question","document_context"))
.setOutputCol("answer")

val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|roberta_teste|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|en|
|Size:|464.1 MB|

## References

https://huggingface.co/oGabrielFreitas/roberta-teste
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
---
layout: model
title: English classifier_bias_sango_pipeline pipeline DistilBertForSequenceClassification from Social-Media-Fairness
author: John Snow Labs
name: classifier_bias_sango_pipeline
date: 2024-09-12
tags: [en, open_source, pipeline, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForSequenceClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`classifier_bias_sango_pipeline` is a English model originally trained by Social-Media-Fairness.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/classifier_bias_sango_pipeline_en_5.5.0_3.0_1726124947223.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/classifier_bias_sango_pipeline_en_5.5.0_3.0_1726124947223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

pipeline = PretrainedPipeline("classifier_bias_sango_pipeline", lang = "en")
annotations = pipeline.transform(df)

```
```scala

val pipeline = new PretrainedPipeline("classifier_bias_sango_pipeline", lang = "en")
val annotations = pipeline.transform(df)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|classifier_bias_sango_pipeline|
|Type:|pipeline|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|249.5 MB|

## References

https://huggingface.co/Social-Media-Fairness/Classifier-Bias-SG

## Included Models

- DocumentAssembler
- TokenizerModel
- DistilBertForSequenceClassification
Loading

0 comments on commit 555e800

Please sign in to comment.