-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add model 2024-10-03-blip_vqa_base_en (#14423)
Co-authored-by: danilojsl <danilo@johnsnowlabs.com>
- Loading branch information
1 parent
6b5e175
commit 27f94af
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
--- | ||
layout: model | ||
title: BLIP Question Answering | ||
author: John Snow Labs | ||
name: blip_vqa_base | ||
date: 2024-10-03 | ||
tags: [en, open_source, tensorflow] | ||
task: Question Answering | ||
language: en | ||
edition: Spark NLP 5.5.0 | ||
spark_version: 3.4 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BLIPForQuestionAnswering | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. | ||
|
||
## Predicted Entities | ||
|
||
|
||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
[Open in Colab](https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace_in_Spark_NLP_BLIPForQuestionAnswering.ipynb){:.button.button-orange.button-orange-trans.co.button-icon} | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/blip_vqa_base_en_5.5.0_3.4_1727997969354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/blip_vqa_base_en_5.5.0_3.4_1727997969354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
To proceed, please create a DataFrame with two columns: | ||
|
||
- An image column that contains the file path for each image in the directory. | ||
- A text column where you can input the specific question you would like to ask about each image. | ||
|
||
For example: | ||
|
||
```python | ||
from pyspark.sql.functions import lit | ||
|
||
images_path = "./images/" | ||
image_df = spark.read.format("image").load(path=images_path) | ||
|
||
test_df = image_df.withColumn("text", lit("What's this picture about?")) | ||
test_df.show() | ||
``` | ||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
imageAssembler = ImageAssembler() \ | ||
.setInputCol("image") \ | ||
.setOutputCol("image_assembler") \ | ||
|
||
imageClassifier = BLIPForQuestionAnswering.load("./{}_spark_nlp".format(MODEL_NAME)) \ | ||
.setInputCols("image_assembler") \ | ||
.setOutputCol("answer") \ | ||
.setSize(384) | ||
|
||
pipeline = Pipeline( | ||
stages=[ | ||
imageAssembler, | ||
imageClassifier, | ||
] | ||
) | ||
|
||
model = pipeline.fit(test_df) | ||
result = model.transform(test_df) | ||
result.select("image_assembler.origin", "answer.result").show(truncate = False) | ||
``` | ||
```scala | ||
val imageAssembler: ImageAssembler = new ImageAssembler() | ||
.setInputCol("image") | ||
.setOutputCol("image_assembler") | ||
|
||
val loadModel = BLIPForQuestionAnswering | ||
.pretrained() | ||
.setInputCols("image_assembler") | ||
.setOutputCol("answer") | ||
.setSize(384) | ||
|
||
val newPipeline: Pipeline = | ||
new Pipeline().setStages(Array(imageAssembler, loadModel)) | ||
|
||
newPipeline.fit(testDF) | ||
val result = model.transform(testDF) | ||
|
||
result.select("image_assembler.origin", "answer.result").show(truncate = false) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|blip_vqa_base| | ||
|Compatibility:|Spark NLP 5.5.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Language:|en| | ||
|Size:|1.4 GB| |