DALLRec:An effective data augmentation framework with fine-tuning large language model for recommendation
We introduce a novel framework (DALLRec) that enables the efficient utilizing large language models to alleviate data sparsity issues and enhance recommendation effectiveness
Main results
data | movielens | |||||||
---|---|---|---|---|---|---|---|---|
backbone | Variants | R@10 | R@20 | R@50 | N@10 | N@20 | N@50 | P@20 |
MF-BPR | Base | 0.0172 | 0.0304 | 0.0616 | 0.0556 | 0.0800 | 0.1334 | 0.0245 |
DALLRec | 0.0176 | 0.0320 | 0.0656 | 0.0576 | 0.0833 | 0.1404 | 0.0264 | |
Imporve | ↑2.33% | ↑5.26% | ↑6.49% | ↑3.59% | ↑4.13% | ↑6.17% | ↑7.76% | |
NMF | Base | 0.0185 | 0.0322 | 0.0670 | 0.0637 | 0.0910 | 0.1523 | 0.0282 |
DALLRec | 0.0189 | 0.0335 | 0.0716 | 0.0661 | 0.0954 | 0.1606 | 0.0306 | |
Imporve | ↑2.16% | ↑4.04% | ↑2.43% | ↑3.77% | ↑4.84% | ↑5.45% | ↑8.51% | |
NGCF | Base | 0.0264 | 0.0544 | 0.0908 | 0.0755 | 0.1270 | 0.1906 | 0.0207 |
DALLRec | 0.0272 | 0.0554 | 0.0943 | 0.0801 | 0.1315 | 0.1982 | 0.0225 | |
Imporve | ↑3.03% | ↑1.84% | ↑3.85% | ↑6.09% | ↑3.54% | ↑3.99% | ↑8.70% | |
LightGCN | Base | 0.0281 | 0.0576 | 0.0950 | 0.0288 | 0.0401 | 0.0544 | 0.0206 |
DALLRec | 0.0295 | 0.0616 | 0.1007 | 0.0299 | 0.0425 | 0.0588 | 0.0221 | |
Imporve | ↑4.98% | ↑6.94% | ↑6.00% | ↑3.82% | ↑3.49% | ↑8.09% | ↑7.28% | |
MMGCN | Base | 0.0322 | 0.0647 | 0.1280 | 0.0834 | 0.1304 | 0.1991 | 0.0292 |
DALLRec | 0.0333 | 0.0675 | 0.1383 | 0.0857 | 0.1343 | 0.2110 | 0.0311 | |
Imporve | ↑3.41% | ↑4.33% | ↑8.05% | ↑2.75% | ↑2.99% | ↑5.98% | ↑6.51% | |
GRCN | Base | 0.0392 | 0.0711 | 0.1255 | 0.0874 | 0.1346 | 0.2016 | 0.0326 |
DALLRec | 0.0412 | 0.0734 | 0.1276 | 0.0895 | 0.1375 | 0.2102 | 0.0351 | |
Imporve | ↑5.10% | ↑3.23% | ↑1.67% | ↑2.40% | ↑2.15% | ↑4.26% | ↑7.67% | |
MMSSL | Base | 0.0469 | 0.0943 | 0.1960 | 0.0888 | 0.1360 | 0.2309 | 0.0356 |
DALLRec | 0.0502 | 0.1001 | 0.2064 | 0.0913 | 0.1431 | 0.2436 | 0.0402 | |
Imporve | ↑7.03% | ↑6.15% | ↑5.31% | ↑2.82% | ↑5.22% | ↑5.50% | ↑12.9% |
We fine-tuning LLM on llama-Factory,Please refer to the specific operation for details:https://github.com/hiyouga/LLaMA-Factory
We generate enhanced data by running Generate enhanced data.py