Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix some coding styles in batch norm #4

Merged
merged 1 commit into from
Dec 20, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions src/operator/nn/batch_norm.cc
Original file line number Diff line number Diff line change
Expand Up @@ -430,7 +430,7 @@ void BatchNormCompute_CPU(const nnvm::NodeAttrs &attrs,

switch (inputs[0].dtype()) {
case mshadow::kFloat32:
MKLDNNBatchNorm_Forward<float>(ctx, param, in_data, req, outputs, aux_states);
MKLDNNBatchNormForward<float>(ctx, param, in_data, req, outputs, aux_states);
return;
}
}
Expand Down Expand Up @@ -472,8 +472,8 @@ void BatchNormGradCompute_CPU(const nnvm::NodeAttrs &attrs,
std::vector<NDArray> in_grad(outputs.begin(), outputs.begin() + 3);

if (inputs[0].dtype() == mshadow::kFloat32) {
MKLDNNBatchNorm_Backward<float>(ctx, param, out_grad, in_data,
out_data, req, in_grad, aux_states);
MKLDNNBatchNormBackward<float>(ctx, param, out_grad, in_data,
out_data, req, in_grad, aux_states);
return;
}
}
Expand Down
62 changes: 33 additions & 29 deletions src/operator/nn/mkldnn/mkldnn_batch_norm-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,8 @@ using mkldnn::forward_training;
using mkldnn::forward_inference;

inline static unsigned _GetFlags(const std::vector<NDArray> &in_data,
const std::vector<NDArray> &aux_states,
const BatchNormParam &param, bool is_train) {
const std::vector<NDArray> &aux_states,
const BatchNormParam &param, bool is_train) {
unsigned flags = 0U;
if (in_data.size() == 3U) {
flags |= use_scale_shift;
Expand All @@ -65,8 +65,10 @@ inline static unsigned _GetFlags(const std::vector<NDArray> &in_data,
}

template <typename DType>
inline static t_bn_f_pdesc _GetFwd(const mkldnn::memory &data_mem, bool is_train,
DType eps, unsigned flags) {
inline static t_bn_f_pdesc _GetFwd(const mkldnn::memory &data_mem,
bool is_train,
DType eps,
unsigned flags) {
auto data_mpd = data_mem.get_primitive_desc();
auto data_md = data_mpd.desc();
auto engine = CpuEngine::Get()->get_engine();
Expand All @@ -81,8 +83,10 @@ inline static t_bn_f_pdesc _GetFwd(const mkldnn::memory &data_mem, bool is_train
}

template <typename DType>
inline static t_bn_b_pdesc _GetBwd(const mkldnn::memory &data_mem, const mkldnn::memory &diff_mem,
DType eps, unsigned flags) {
inline static t_bn_b_pdesc _GetBwd(const mkldnn::memory &data_mem,
const mkldnn::memory &diff_mem,
DType eps,
unsigned flags) {
auto data_mpd = data_mem.get_primitive_desc();
auto data_md = data_mpd.desc();
auto diff_mpd = diff_mem.get_primitive_desc();
Expand All @@ -94,11 +98,11 @@ inline static t_bn_b_pdesc _GetBwd(const mkldnn::memory &data_mem, const mkldnn:
}

template <typename DType>
void MKLDNNBatchNorm_Forward(const OpContext &ctx, const BatchNormParam &param,
const std::vector<NDArray> &in_data,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &out_data,
const std::vector<NDArray> &aux_states) {
void MKLDNNBatchNormForward(const OpContext &ctx, const BatchNormParam &param,
const std::vector<NDArray> &in_data,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &out_data,
const std::vector<NDArray> &aux_states) {
TmpMemMgr::Get()->Init(ctx.requested[batchnorm::kTempSpace]);
unsigned flags = _GetFlags(in_data, aux_states, param, ctx.is_train);
const NDArray &data = in_data[batchnorm::kData];
Expand Down Expand Up @@ -194,13 +198,13 @@ void MKLDNNBatchNorm_Forward(const OpContext &ctx, const BatchNormParam &param,
}

template <typename DType>
void MKLDNNBatchNorm_Backward(const OpContext &ctx, const BatchNormParam &param,
const std::vector<NDArray> &out_grad,
const std::vector<NDArray> &in_data,
const std::vector<NDArray> &out_data,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &in_grad,
const std::vector<NDArray> &aux_states) {
void MKLDNNBatchNormBackward(const OpContext &ctx, const BatchNormParam &param,
const std::vector<NDArray> &out_grad,
const std::vector<NDArray> &in_data,
const std::vector<NDArray> &out_data,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &in_grad,
const std::vector<NDArray> &aux_states) {
TmpMemMgr::Get()->Init(ctx.requested[batchnorm::kTempSpace]);
CHECK_EQ(out_grad.size(), param.output_mean_var ? 3U : 1U);
CHECK_EQ(in_data.size(), 3U);
Expand Down Expand Up @@ -262,12 +266,12 @@ void MKLDNNBatchNorm_Backward(const OpContext &ctx, const BatchNormParam &param,

DType minus_mom = (1.0f - param.momentum);
for (int i = 0; i < channels_; i++) {
moving_mean_ptr[i] = moving_mean_ptr[i] * param.momentum
+ out_mean_ptr[i] * minus_mom;
moving_mean_ptr[i] = moving_mean_ptr[i] * param.momentum +
out_mean_ptr[i] * minus_mom;
float variance = INVSTD_TO_VARIANCE(out_var_ptr[i], param.eps);
tmp_var_ptr[i] = variance;
moving_var_ptr[i] = moving_var_ptr[i] * param.momentum
+ variance * minus_mom;
moving_var_ptr[i] = moving_var_ptr[i] * param.momentum +
variance * minus_mom;
}

std::shared_ptr<const mkldnn::memory> out_mean_mem(
Expand All @@ -276,13 +280,13 @@ void MKLDNNBatchNorm_Backward(const OpContext &ctx, const BatchNormParam &param,
new mkldnn::memory(bwd_pd.variance_primitive_desc(), out_var_ptr));

auto bn_bwd = mkldnn::batch_normalization_backward(bwd_pd,
*data_mem,
mkldnn::primitive::at(*out_mean_mem),
mkldnn::primitive::at(var_mem),
*diff_mem,
*weight_mem,
*gradi_mem,
*gradw_mem);
*data_mem,
mkldnn::primitive::at(*out_mean_mem),
mkldnn::primitive::at(var_mem),
*diff_mem,
*weight_mem,
*gradi_mem,
*gradw_mem);

MKLDNNStream::Get()->RegisterPrim(bn_bwd);
MKLDNNStream::Get()->Submit();
Expand Down