Skip to content

Various utility scripts for running Lucene performance tests

License

Notifications You must be signed in to change notification settings

zhaih/luceneutil

 
 

Repository files navigation

Luceneutil: Lucene benchmarking utilities

Benchmarking Lucene Duke -- thank you @mocobeta!

Setting up luceneutil

First, pick a root directory, under which luceneutil will be checked out, datasets exist, indices are built, Lucene source code is checked out, etc.. We'll refer to this directory as $LUCENE_BENCH_HOME here.

# 1. checkout luceneutil:
# Choose a suitable directory, e.g. ~/Projects/lucene/benchmarks.
mkdir $LUCENE_BENCH_HOME && cd $LUCENE_BENCH_HOME
git clone https://github.com/mikemccand/luceneutil.git util

# 2. Run the setup script
cd util
python src/python/setup.py -download

In the second step, the setup procedure creates all necessary directories in the clones parent directory and downloads a 6 GB compressed Wikipedia line doc file from an Apache mirror. If you don't want to download the large data file just remove the -download flag from the commandline.

After the download has completed, extract the lzma file in $LUCENE_BENCH_HOME/data.

(Optional, for development) set up IntelliJ

Should be able to open by IntelliJ automatically. The gradle will write a local configuration file gradle.properties in which you can configure your local lucene repository so that intellij will use it as external library and code suggestion will work. Also because the compilation is looking for jar so you have to build your lucene repo (run ./gradlew jar) manually if you haven't done so. Note the gradle build will NOT be able to compile the whole project because some codes do have errors so we still need to filter which files to compile (see competitions.py). So you still need to follow the rest procedure.

Preparing the benchmark candidates

The benchmark compares a baseline version of Lucene to a patched one. Therefore we need two checkouts of Lucene, for example:

  • $LUCENE_BENCH_HOME/lucene_baseline: contains a complete svn checkout of Lucene, this is the baseline for comparison
  • $LUCENE_BENCH_HOME/lucene_candidate: contains a complete svn checkout of Lucene with some change applied that should be benchmarked against the baseline.

A trunk version of Lucene can be checked out with

cd $LUCENE_BENCH_HOME
git clone https://github.com/apache/lucene.git lucene_baseline

Adjust the command accordingly for lucene_candidate.

Running a first benchmark

setup.py has created two files: localconstants.py, and localrun.py in $LUCENE_BENCH_HOME/util/src/python/.

The file localconstants.py should be used to override any existing constants in constants.py, for example if you want to change the Java commandline used to run benchmarks. To run an inintal benchmark you don't need to modify this file.

Now you can start editing localrun.py to define your comparison, at the bottom near its __main__:

This file is a copy of example.py and should be used to define your comparisons. You don't have to build 2 separate indexes; you can make one and pass it to the two different competitors if you are only benching some code difference but not a file format change.

To run the benchmark you first test like this:

cd $LUCENE_BENCH_HOME/util
python src/python/localrun.py -source wikimedium10k

If you get ClassNotFound exceptions, your Lucene checkouts may need to be rebuilt. Run ./gradlew jar in both lucene_candidate/ and lucene_baseline/ dirs.

If your benchmark fails with "facetDim Date was not indexed" or similar, try adding

facets = (('taxonomy:Date', 'Date'),('sortedset:Month', 'Month'),('sortedset:DayOfYear', 'DayOfYear'))
index = comp.newIndex('lucene_baseline', sourceData, facets=facets, indexSort='dayOfYearNumericDV:long')

in localrun.py, and use that index in your benchmarks.

Running the geo benchmark

This one is different and self-contained. Read the command-line examples at the top of src/main/perf/IndexAndSearchOpenStreetMaps.java

Creating line doc file from an arbitrary Wikimedia dump data

You can create your own line doc file from an arbitrary Wikimedia dump by following steps. Note that the src/python/createJapaneseWikipediaLineDocsFile.py helper tool does these steps:

  1. Download Wikimedia dump (XML) from https://dumps.wikimedia.org/ and decompress it on $YOUR_DATA_DIR.

    e.g.:

    bunzip2 -d /data/jawiki/jawiki-20200620-pages-articles-multistream.xml.bz2
    
  2. Run src/python/wikiXMLToText.py to extract attributes such as title and timestamp from the XML dump.

    e.g.:

    python src/python/wikiXMLToText.py /data/jawiki/jawiki-20200620-pages-articles-multistream.xml /data/jawiki/jawiki-20200620-text.txt
    
  3. Run src/python/WikipediaExtractor.py to extract cleaned body text from the XML dump. This may take long time!

    e.g.:

    cat /data/jawiki/jawiki-20200620-pages-articles-multistream.xml | python -u src/python/WikipediaExtractor.py -b102400m -o /data/jawiki
    

4a. Combine the outputs of 2. and 3. by running src/python/combineWikiFiles.py.

e.g.:
```
python src/python/combineWikiFiles.py /data/jawiki/jawiki-20200620-text.txt /data/jawiki/AA/wiki_00 /data/jawiki/jawiki-20200620-lines.txt
```

4b. (Optional) If you want to strip all but the last three columns from the combined file, pass the -only-three-columns to combineWikiFiles.py:

e.g.:
```
python src/python/combineWikiFiles.py /data/jawiki/jawiki-20200620-text.txt /data/jawiki/AA/wiki_00 /data/jawiki/jawiki-20200620-lines.txt -only-three-columns
```

Alternatively, use the Unix `cut` tool:

```
# extract titie, timestamp and body text
cat /data/jawiki/jawiki-20200620-lines.txt | cut -f1,2,3
```

Running the KNN benchmark

Some knn-related tasks are included in the main benchmarks. If you specifically want to test KNN/HNSW there is a script dedicated to that in src/python/knnPerfTest.py which has instructions on how to run it in its comments.

About

Various utility scripts for running Lucene performance tests

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 94.7%
  • Java 2.7%
  • Python 2.4%
  • Roff 0.1%
  • CSS 0.1%
  • Shell 0.0%