-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
this one is the Yang and Chen SimMSeq simulation method.
- Loading branch information
1 parent
6055aa1
commit 4db9761
Showing
1 changed file
with
62 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
#!/usr/bin/Rscript | ||
### SIMBA | ||
### Simulation of Microbiome data with Biological Accuracy | ||
### Morgan Essex - MDC Berlin | ||
### Jakob Wirbel - EMBL Heidelberg | ||
### 2020 GNU GPL 3.0 | ||
|
||
# Helper functions to simulate data according to Yang and Chen | ||
# Based on the SimulateMSeq function in the GUniFrac package | ||
|
||
#' # wrapper for the Yang and Chen | ||
#' @keywords internal | ||
simulate.SimMSeq <- function(feat, meta, sim.out, sim.params){ | ||
|
||
test.package("GUniFrac") | ||
|
||
ab.scale <- sim.params$ab.scale | ||
prop.markers <- sim.params$prop.markers | ||
class.balance <- sim.params$class.balance | ||
repeats <- sim.params$repeats | ||
|
||
no.marker.feat <- round(prop.markers * nrow(feat)) | ||
el.feat.names <- rownames(feat) | ||
num.sample <- ncol(feat) | ||
|
||
libSizesOrig <- colSums(feat) | ||
|
||
pb <- progress_bar$new(total = length(ab.scale)*repeats) | ||
for (a in seq_along(ab.scale)){ | ||
for (r in seq_len(repeats)){ | ||
|
||
# create new dataset with their function | ||
sim.chen <- SimulateMSeq(feat, | ||
nSam=ncol(feat), nOTU=nrow(feat), | ||
diff.otu.pct = prop.markers, | ||
diff.otu.mode = 'mix', | ||
diff.otu.direct = 'balanced', | ||
covariate.type = 'binary', | ||
grp.ratio = 0.5/class.balance, | ||
covariate.eff.mean = a, | ||
depth.mu = mean(libSizesOrig)) | ||
# get the info out of sim.chen | ||
sim.feat <- sim.chen$otu.tab.sim[rownames(feat),] | ||
marker.idx <- sim.chen$otu.names[which(sim.chen$diff.otu.ind)] | ||
label <- sim.chen$covariate[,1] | ||
label <- label[colnames(sim.feat)] | ||
label[label==0] <- -1 | ||
|
||
# save data in H5-file | ||
h5.subdir <- paste0('ab', a, '_rep', r) | ||
stopifnot(h5createGroup(sim.out, h5.subdir)) | ||
h5write(label, sim.out, paste0(h5.subdir, '/labels')) | ||
h5write(sim.feat, sim.out, paste0(h5.subdir, '/features')) | ||
h5write(marker.idx, sim.out, paste0(h5.subdir, '/marker_idx')) | ||
h5write(colnames(sim.feat), sim.out, | ||
paste(h5.subdir, '/sample_names', sep='')) | ||
h5write(rownames(sim.feat), sim.out, | ||
paste(h5.subdir, '/feature_names', sep='')) | ||
pb$tick() | ||
} | ||
} | ||
} |