Codes for the paper "Learning Graph-Level Representations with Gated Recurrent Neural Networks". (https://arxiv.org/pdf/1805.07683.pdf)
Get the source code,
git clone https://github.com/yuj-umd/graphRNN.git
Install pytorch from https://pytorch.org/
Run
python main.py \
-seed 1 \
-data $data \
-learning_rate $learning_rate \
-num_epochs $num_epochs \
-hidden $hidden \
-fold $fold \
-embedding_dim $embedding_dim \
-rnn_hidden_dim $rnn_hidden_dim
Paramaters are defined as
data: MUTAG, NCI1, NCI109, DD, ENZYMES
feat_dim: Number of node labels
embedding_dim: Dimension of node embedding
num_class: Number of graph classes
rnn_hidden_dim: Hidden unit size of RNN
learning_rate: initial learning_rate
@article{jin2018learning,
title={Learning Graph-Level Representations with Gated Recurrent Neural Networks},
author={Jin, Yu and JaJa, Joseph F},
journal={arXiv preprint arXiv:1805.07683},
year={2018}
}