Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update from origin #1

Merged
merged 1,949 commits into from
Jul 17, 2017
Merged

update from origin #1

merged 1,949 commits into from
Jul 17, 2017

Conversation

yaozhang2016
Copy link
Owner

What changes were proposed in this pull request?

(Please fill in changes proposed in this fix)

How was this patch tested?

(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Please review https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark before opening a pull request.

lianhuiwang and others added 30 commits June 14, 2017 09:57
…itions rule.

## What changes were proposed in this pull request?
After PruneFileSourcePartitions rule, It needs reset table's statistics because PruneFileSourcePartitions can filter some unnecessary partitions. So the statistics need to be changed.

## How was this patch tested?
add unit test.

Author: lianhuiwang <lianhuiwang09@gmail.com>

Closes #18205 from lianhuiwang/SPARK-20986.
…of slave lost or fetch failure

## What changes were proposed in this pull request?

Currently, when we detect fetch failure, we only remove the shuffle files produced by the executor, while the host itself might be down and all the shuffle files are not accessible. In case we are running multiple executors on a host, any host going down currently results in multiple fetch failures and multiple retries of the stage, which is very inefficient. If we remove all the shuffle files on that host, on first fetch failure, we can rerun all the tasks on that host in a single stage retry.

## How was this patch tested?

Unit testing and also ran a job on the cluster and made sure multiple retries are gone.

Author: Sital Kedia <skedia@fb.com>
Author: Imran Rashid <irashid@cloudera.com>

Closes #18150 from sitalkedia/cleanup_shuffle.
## What changes were proposed in this pull request?

#18106 Support TRUNC (number),  We should also add function alias for `MOD `and `POSITION`.

`POSITION(substr IN str) `is a synonym for `LOCATE(substr,str)`. same as MySQL: https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_position

## How was this patch tested?

unit tests

Author: Yuming Wang <wgyumg@gmail.com>

Closes #18206 from wangyum/SPARK-20754-mod&position.
## What changes were proposed in this pull request?

Use Poisson analysis for approx count in all cases.

## How was this patch tested?

Existing tests.

Author: Sean Owen <sowen@cloudera.com>

Closes #18276 from srowen/SPARK-21057.
…ark 2.1

### What changes were proposed in this pull request?
Before the PR, Spark is unable to read the partitioned table created by Spark 2.1 when the table schema does not put the partitioning column at the end of the schema.
[assert(partitionFields.map(_.name) == partitionColumnNames)](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/catalog/interface.scala#L234-L236)

When reading the table metadata from the metastore, we also need to reorder the columns.

### How was this patch tested?
Added test cases to check both Hive-serde and data source tables.

Author: gatorsmile <gatorsmile@gmail.com>

Closes #18295 from gatorsmile/reorderReadSchema.
### What changes were proposed in this pull request?

Since both table properties and storage properties share the same key values, table properties are not shown in the output of DESC EXTENDED/FORMATTED when the storage properties are not empty.

This PR is to fix the above issue by renaming them to different keys.

### How was this patch tested?
Added test cases.

Author: Xiao Li <gatorsmile@gmail.com>

Closes #18294 from gatorsmile/tableProperties.
## What changes were proposed in this pull request?
This patch moves constraint related code into a separate trait QueryPlanConstraints, so we don't litter QueryPlan with a lot of constraint private functions.

## How was this patch tested?
This is a simple move refactoring and should be covered by existing tests.

Author: Reynold Xin <rxin@databricks.com>

Closes #18298 from rxin/SPARK-21091.
This is #17888 .

Below are some spark ui snapshots.

Master, after worker disconnects:

<img width="1433" alt="master_disconnect" src="https://cloud.githubusercontent.com/assets/2576762/26398687/d0ee228e-40ac-11e7-986d-d3b57b87029f.png">

Master, after worker reconnects, notice the `running drivers` part:

<img width="1412" alt="master_reconnects" src="https://cloud.githubusercontent.com/assets/2576762/26398697/d50735a4-40ac-11e7-80d8-6e9e1cf0b62f.png">

This patch, after worker disconnects:
<img width="1412" alt="patch_disconnect" src="https://cloud.githubusercontent.com/assets/2576762/26398009/c015d3dc-40aa-11e7-8bb4-df11a1f66645.png">

This patch, after worker reconnects:
![image](https://cloud.githubusercontent.com/assets/2576762/26398037/d313769c-40aa-11e7-8613-5f157d193150.png)

cc cloud-fan jiangxb1987

Author: Li Yichao <lyc@zhihu.com>

Closes #18084 from liyichao/SPARK-19900-1.
## What changes were proposed in this pull request?
It is really painful to not have configs in logical plan and expressions. We had to add all sorts of hacks (e.g. pass SQLConf explicitly in functions). This patch exposes SQLConf in logical plan, using a thread local variable and a getter closure that's set once there is an active SparkSession.

The implementation is a bit of a hack, since we didn't anticipate this need in the beginning (config was only exposed in physical plan). The implementation is described in `SQLConf.get`.

In terms of future work, we should follow up to clean up CBO (remove the need for passing in config).

## How was this patch tested?
Updated relevant tests for constraint propagation.

Author: Reynold Xin <rxin@databricks.com>

Closes #18299 from rxin/SPARK-21092.
… JSON

### What changes were proposed in this pull request?
The current option name `wholeFile` is misleading for CSV users. Currently, it is not representing a record per file. Actually, one file could have multiple records. Thus, we should rename it. Now, the proposal is `multiLine`.

### How was this patch tested?
N/A

Author: Xiao Li <gatorsmile@gmail.com>

Closes #18202 from gatorsmile/renameCVSOption.
…lass Splitting

## What changes were proposed in this pull request?

This pull-request exclusively includes the class splitting feature described in #16648. When code for a given class would grow beyond 1600k bytes, a private, nested sub-class is generated into which subsequent functions are inlined. Additional sub-classes are generated as the code threshold is met subsequent times. This code includes 3 changes:

1. Includes helper maps, lists, and functions for keeping track of sub-classes during code generation (included in the `CodeGenerator` class). These helper functions allow nested classes and split functions to be initialized/declared/inlined to the appropriate locations in the various projection classes.
2. Changes `addNewFunction` to return a string to support instances where a split function is inlined to a nested class and not the outer class (and so must be invoked using the class-qualified name). Uses of `addNewFunction` throughout the codebase are modified so that the returned name is properly used.
3. Removes instances of the `this` keyword when used on data inside generated classes. All state declared in the outer class is by default global and accessible to the nested classes. However, if a reference to global state in a nested class is prepended with the `this` keyword, it would attempt to reference state belonging to the nested class (which would not exist), rather than the correct variable belonging to the outer class.

## How was this patch tested?

Added a test case to the `GeneratedProjectionSuite` that increases the number of columns tested in various projections to a threshold that would previously have triggered a `JaninoRuntimeException` for the Constant Pool.

Note: This PR does not address the second Constant Pool issue with code generation (also mentioned in #16648): excess global mutable state. A second PR may be opened to resolve that issue.

Author: ALeksander Eskilson <alek.eskilson@cerner.com>

Closes #18075 from bdrillard/class_splitting_only.
## What changes were proposed in this pull request?

doc only change

## How was this patch tested?

manually

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #18312 from felixcheung/sqljsonwholefiledoc.
…dd.LocalCheckpointSuite.missing checkpoint block fails with informative message

## What changes were proposed in this pull request?

Currently we don't wait to confirm the removal of the block from the slave's BlockManager, if the removal takes too much time, we will fail the assertion in this test case.
The failure can be easily reproduced if we sleep for a while before we remove the block in BlockManagerSlaveEndpoint.receiveAndReply().

## How was this patch tested?
N/A

Author: Xingbo Jiang <xingbo.jiang@databricks.com>

Closes #18314 from jiangxb1987/LocalCheckpointSuite.
… to core

## What changes were proposed in this pull request?

Move Hadoop delegation token code from `spark-yarn` to `spark-core`, so that other schedulers (such as Mesos), may use it.  In order to avoid exposing Hadoop interfaces in spark-core, the new Hadoop delegation token classes are kept private.  In order to provider backward compatiblity, and to allow YARN users to continue to load their own delegation token providers via Java service loading, the old YARN interfaces, as well as the client code that uses them, have been retained.

Summary:
- Move registered `yarn.security.ServiceCredentialProvider` classes from `spark-yarn` to `spark-core`.  Moved them into a new, private hierarchy under `HadoopDelegationTokenProvider`.  Client code in `HadoopDelegationTokenManager` now loads credentials from a whitelist of three providers (`HadoopFSDelegationTokenProvider`, `HiveDelegationTokenProvider`, `HBaseDelegationTokenProvider`), instead of service loading, which means that users are not able to implement their own delegation token providers, as they are in the `spark-yarn` module.

- The `yarn.security.ServiceCredentialProvider` interface has been kept for backwards compatibility, and to continue to allow YARN users to implement their own delegation token provider implementations.  Client code in YARN now fetches tokens via the new `YARNHadoopDelegationTokenManager` class, which fetches tokens from the core providers through `HadoopDelegationTokenManager`, as well as service loads them from `yarn.security.ServiceCredentialProvider`.

Old Hierarchy:

```
yarn.security.ServiceCredentialProvider (service loaded)
  HadoopFSCredentialProvider
  HiveCredentialProvider
  HBaseCredentialProvider
yarn.security.ConfigurableCredentialManager
```

New Hierarchy:

```
HadoopDelegationTokenManager
HadoopDelegationTokenProvider (not service loaded)
  HadoopFSDelegationTokenProvider
  HiveDelegationTokenProvider
  HBaseDelegationTokenProvider

yarn.security.ServiceCredentialProvider (service loaded)
yarn.security.YARNHadoopDelegationTokenManager
```
## How was this patch tested?

unit tests

Author: Michael Gummelt <mgummelt@mesosphere.io>
Author: Dr. Stefan Schimanski <sttts@mesosphere.io>

Closes #17723 from mgummelt/SPARK-20434-refactor-kerberos.
… COMMENT

### What changes were proposed in this pull request?
`ALTER TABLE SET TBLPROPERTIES` should not overwrite `COMMENT` even if the input property does not have the property of `COMMENT`. This PR is to fix the issue.

### How was this patch tested?
Covered by the existing tests.

Author: Xiao Li <gatorsmile@gmail.com>

Closes #18318 from gatorsmile/fixTableComment.
…dren node.

## What changes were proposed in this pull request?

Just as the function name and comments of `TreeNode.mapChildren` mentioned, the function should be apply to all currently node children. So, the follow code should judge whether it is the children node.

https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala#L342

## How was this patch tested?

Existing tests.

Author: Xianyang Liu <xianyang.liu@intel.com>

Closes #18284 from ConeyLiu/treenode.
…N[GTH]

## What changes were proposed in this pull request?

This PR adds built-in SQL function `BIT_LENGTH()`, `CHAR_LENGTH()`, and `OCTET_LENGTH()` functions.

`BIT_LENGTH()` returns the bit length of the given string or binary expression.
`CHAR_LENGTH()` returns the length of the given string or binary expression. (i.e. equal to `LENGTH()`)
`OCTET_LENGTH()` returns the byte length of the given string or binary expression.

## How was this patch tested?

Added new test suites for these three functions

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #18046 from kiszk/SPARK-20749.
…rSuite.master correctly recover the application"

## What changes were proposed in this pull request?

Due to the RPC asynchronous event processing, The test "correctly recover the application" could potentially be failed. The issue could be found in here: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/78126/testReport/org.apache.spark.deploy.master/MasterSuite/master_correctly_recover_the_application/.

So here fixing this flaky test.

## How was this patch tested?

Existing UT.

CC cloud-fan jiangxb1987 , please help to review, thanks!

Author: jerryshao <sshao@hortonworks.com>

Closes #18321 from jerryshao/SPARK-12552-followup.
## What changes were proposed in this pull request?

Update Running R Tests dependence packages to:
```bash
R -e "install.packages(c('knitr', 'rmarkdown', 'testthat', 'e1071', 'survival'), repos='http://cran.us.r-project.org')"
```

## How was this patch tested?
manual tests

Author: Yuming Wang <wgyumg@gmail.com>

Closes #18271 from wangyum/building-spark.
…y for shuffle service.

## What changes were proposed in this pull request?

In current code, blockIds in `OpenBlocks` are stored in the iterator on shuffle service.
There are some redundant characters in  blockId(`"shuffle_" + shuffleId + "_" + mapId + "_" + reduceId`). This pr proposes to improve the footprint and alleviate the memory pressure on shuffle service.

Author: jinxing <jinxing6042@126.com>

Closes #18231 from jinxing64/SPARK-20994-v2.
## What changes were proposed in this pull request?

Previous code mistakenly use `table.properties.get("comment")` to read the existing table comment, we should use `table.comment`

## How was this patch tested?

new regression test

Author: Wenchen Fan <wenchen@databricks.com>

Closes #18325 from cloud-fan/unset.
## What changes were proposed in this pull request?

ABS function support string type. Hive/MySQL support this feature.

Ref: https://github.com/apache/hive/blob/4ba713ccd85c3706d195aeef9476e6e6363f1c21/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFAbs.java#L93

## How was this patch tested?
 unit tests

Author: Yuming Wang <wgyumg@gmail.com>

Closes #18153 from wangyum/SPARK-20931.
…ndled

## What changes were proposed in this pull request?

“spark.eventLog.dir” supports with space characters.

1. Update EventLoggingListenerSuite like `testDir = Utils.createTempDir(namePrefix = s"history log")`
2. Fix EventLoggingListenerSuite tests

## How was this patch tested?

update unit tests

Author: zuotingbing <zuo.tingbing9@zte.com.cn>

Closes #18285 from zuotingbing/spark-resolveURI.
…th.wait.timeout" hasn't been used in spark

[https://issues.apache.org/jira/browse/SPARK-21126](https://issues.apache.org/jira/browse/SPARK-21126)
The configuration which named "spark.core.connection.auth.wait.timeout" hasn't been used in spark,so I think it should be removed from configuration.md.

Author: liuzhaokun <liu.zhaokun@zte.com.cn>

Closes #18333 from liu-zhaokun/new3.
…n info in AppVeyor tests

## What changes were proposed in this pull request?

This PR proposes three things as below:

**Install packages per documentation** - this does not affect the tests itself (but CRAN which we are not doing via AppVeyor) up to my knowledge.

This adds `knitr` and `rmarkdown` per https://github.com/apache/spark/blob/45824fb608930eb461e7df53bb678c9534c183a9/R/WINDOWS.md#unit-tests (please see 45824fb)

**Improve logs/shorten logs** - actually, long logs can be a problem on AppVeyor (e.g., see #17873)

`R -e ...` repeats printing R information for each invocation as below:

```
R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
```

It looks reducing the call might be slightly better and print out the versions together looks more readable.

Before:

```
# R information ...
> packageVersion('testthat')
[1] '1.0.2'
>
>

# R information ...
> packageVersion('e1071')
[1] '1.6.8'
>
>
... 3 more times
```

After:

```
# R information ...
> packageVersion('knitr'); packageVersion('rmarkdown'); packageVersion('testthat'); packageVersion('e1071'); packageVersion('survival')
[1] ‘1.16’
[1] ‘1.6’
[1] ‘1.0.2’
[1] ‘1.6.8’
[1] ‘2.41.3’
```

**Add`appveyor.yml`/`dev/appveyor-install-dependencies.ps1` for triggering the test**

Changing this file might break the test, e.g., #16927

## How was this patch tested?

Before (please see https://ci.appveyor.com/project/HyukjinKwon/spark/build/169-master)
After (please see the AppVeyor build in this PR):

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #18336 from HyukjinKwon/minor-add-knitr-and-rmarkdown.
…ore listing files in R tests

## What changes were proposed in this pull request?

This PR proposes to list the files in test _after_ removing both "spark-warehouse" and "metastore_db" so that the next run of R tests pass fine. This is sometimes a bit annoying.

## How was this patch tested?

Manually running multiple times R tests via `./R/run-tests.sh`.

**Before**

Second run:

```
SparkSQL functions: Spark package found in SPARK_HOME: .../spark
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
....................................................................................................1234.......................

Failed -------------------------------------------------------------------------
1. Failure: No extra files are created in SPARK_HOME by starting session and making calls (test_sparkSQL.R#3384)
length(list1) not equal to length(list2).
1/1 mismatches
[1] 25 - 23 == 2

2. Failure: No extra files are created in SPARK_HOME by starting session and making calls (test_sparkSQL.R#3384)
sort(list1, na.last = TRUE) not equal to sort(list2, na.last = TRUE).
10/25 mismatches
x[16]: "metastore_db"
y[16]: "pkg"

x[17]: "pkg"
y[17]: "R"

x[18]: "R"
y[18]: "README.md"

x[19]: "README.md"
y[19]: "run-tests.sh"

x[20]: "run-tests.sh"
y[20]: "SparkR_2.2.0.tar.gz"

x[21]: "metastore_db"
y[21]: "pkg"

x[22]: "pkg"
y[22]: "R"

x[23]: "R"
y[23]: "README.md"

x[24]: "README.md"
y[24]: "run-tests.sh"

x[25]: "run-tests.sh"
y[25]: "SparkR_2.2.0.tar.gz"

3. Failure: No extra files are created in SPARK_HOME by starting session and making calls (test_sparkSQL.R#3388)
length(list1) not equal to length(list2).
1/1 mismatches
[1] 25 - 23 == 2

4. Failure: No extra files are created in SPARK_HOME by starting session and making calls (test_sparkSQL.R#3388)
sort(list1, na.last = TRUE) not equal to sort(list2, na.last = TRUE).
10/25 mismatches
x[16]: "metastore_db"
y[16]: "pkg"

x[17]: "pkg"
y[17]: "R"

x[18]: "R"
y[18]: "README.md"

x[19]: "README.md"
y[19]: "run-tests.sh"

x[20]: "run-tests.sh"
y[20]: "SparkR_2.2.0.tar.gz"

x[21]: "metastore_db"
y[21]: "pkg"

x[22]: "pkg"
y[22]: "R"

x[23]: "R"
y[23]: "README.md"

x[24]: "README.md"
y[24]: "run-tests.sh"

x[25]: "run-tests.sh"
y[25]: "SparkR_2.2.0.tar.gz"

DONE ===========================================================================
```

**After**

Second run:

```
SparkSQL functions: Spark package found in SPARK_HOME: .../spark
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................
```

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #18335 from HyukjinKwon/SPARK-21128.
## What changes were proposed in this pull request?

Add SQL trunc function

## How was this patch tested?
standard test

Author: actuaryzhang <actuaryzhang10@gmail.com>

Closes #18291 from actuaryzhang/sparkRTrunc2.
## What changes were proposed in this pull request?

The function `char_length` is shorthand for `character_length` function. Both Hive and Postgresql support `character_length`,  This PR add support for `character_length`.

Ref:
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-StringFunctions
https://www.postgresql.org/docs/current/static/functions-string.html

## How was this patch tested?

unit tests

Author: Yuming Wang <wgyumg@gmail.com>

Closes #18330 from wangyum/SPARK-20749-character_length.
…port string type

## What changes were proposed in this pull request?

Built-in SQL Function UnaryMinus/UnaryPositive support string type, if it's string type, convert it to double type, after this PR:
```sql
spark-sql> select positive('-1.11'), negative('-1.11');
-1.11   1.11
spark-sql>
```

## How was this patch tested?

unit tests

Author: Yuming Wang <wgyumg@gmail.com>

Closes #18173 from wangyum/SPARK-20948.
Michael Allman and others added 29 commits July 11, 2017 14:50
(Link to Jira: https://issues.apache.org/jira/browse/SPARK-20331)

## What changes were proposed in this pull request?

Spark 2.1 introduced scalable support for Hive tables with huge numbers of partitions. Key to leveraging this support is the ability to prune unnecessary table partitions to answer queries. Spark supports a subset of the class of partition pruning predicates that the Hive metastore supports. If a user writes a query with a partition pruning predicate that is *not* supported by Spark, Spark falls back to loading all partitions and pruning client-side. We want to broaden Spark's current partition pruning predicate pushdown capabilities.

One of the key missing capabilities is support for disjunctions. For example, for a table partitioned by date, writing a query with a predicate like

    date = 20161011 or date = 2016101

will result in Spark fetching all partitions. For a table partitioned by date and hour, querying a range of hours across dates can be quite difficult to accomplish without fetching all partition metadata.

The current partition pruning support supports only comparisons against literals. We can expand that to foldable expressions by evaluating them at planning time.

We can also implement support for the "IN" comparison by expanding it to a sequence of "OR"s.

## How was this patch tested?

The `HiveClientSuite` and `VersionsSuite` were refactored and simplified to make Hive client-based, version-specific testing more modular and conceptually simpler. There are now two Hive test suites: `HiveClientSuite` and `HivePartitionFilteringSuite`. These test suites have a single-argument constructor taking a `version` parameter. As such, these test suites cannot be run by themselves. Instead, they have been bundled into "aggregation" test suites which run each suite for each Hive client version. These aggregation suites are called `HiveClientSuites` and `HivePartitionFilteringSuites`. The `VersionsSuite` and `HiveClientSuite` have been refactored into each of these aggregation suites, respectively.

`HiveClientSuite` and `HivePartitionFilteringSuite` subclass a new abstract class, `HiveVersionSuite`. `HiveVersionSuite` collects functionality related to testing a single Hive version and overrides relevant test suite methods to display version-specific information.

A new trait, `HiveClientVersions`, has been added with a sequence of Hive test versions.

Author: Michael Allman <michael@videoamp.com>

Closes #17633 from mallman/spark-20331-enhanced_partition_pruning_pushdown.
…ia NumberFormat in CSV

## What changes were proposed in this pull request?

This PR proposes to remove `NumberFormat.parse` use to disallow a case of partially parsed data. For example,

```
scala> spark.read.schema("a DOUBLE").option("mode", "FAILFAST").csv(Seq("10u12").toDS).show()
+----+
|   a|
+----+
|10.0|
+----+
```

## How was this patch tested?

Unit tests added in `UnivocityParserSuite` and `CSVSuite`.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #18532 from HyukjinKwon/SPARK-21263.
## What changes were proposed in this pull request?

Add sql test for window functions, also remove uncecessary test cases in `WindowQuerySuite`.

## How was this patch tested?

Added `window.sql` and the corresponding output file.

Author: Xingbo Jiang <xingbo.jiang@databricks.com>

Closes #18591 from jiangxb1987/window.
…nition

## What changes were proposed in this pull request?

This PR deals with four points as below:

- Reuse existing DDL parser APIs rather than reimplementing within PySpark

- Support DDL formatted string, `field type, field type`.

- Support case-insensitivity for parsing.

- Support nested data types as below:

  **Before**
  ```
  >>> spark.createDataFrame([[[1]]], "struct<a: struct<b: int>>").show()
  ...
  ValueError: The strcut field string format is: 'field_name:field_type', but got: a: struct<b: int>
  ```

  ```
  >>> spark.createDataFrame([[[1]]], "a: struct<b: int>").show()
  ...
  ValueError: The strcut field string format is: 'field_name:field_type', but got: a: struct<b: int>
  ```

  ```
  >>> spark.createDataFrame([[1]], "a int").show()
  ...
  ValueError: Could not parse datatype: a int
  ```

  **After**
  ```
  >>> spark.createDataFrame([[[1]]], "struct<a: struct<b: int>>").show()
  +---+
  |  a|
  +---+
  |[1]|
  +---+
  ```

  ```
  >>> spark.createDataFrame([[[1]]], "a: struct<b: int>").show()
  +---+
  |  a|
  +---+
  |[1]|
  +---+
  ```

  ```
  >>> spark.createDataFrame([[1]], "a int").show()
  +---+
  |  a|
  +---+
  |  1|
  +---+
  ```

## How was this patch tested?

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #18590 from HyukjinKwon/deduplicate-python-ddl.
…t AM.

Currently the code monitoring the launch of the client AM uses the value of
spark.yarn.report.interval as the interval for polling the RM; if someone
has that value to a really large interval, it would take that long to detect
that the client AM has started, which is not expected.

Instead, have a separate config for the interval to use when the client AM is
starting. The other config is still used in cluster mode, and to detect the
status of the client AM after it is already running.

Tested by running client and cluster mode apps with a modified value of
spark.yarn.report.interval, verifying client AM launch is detected before
that interval elapses.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #18380 from vanzin/SPARK-16019.
### What changes were proposed in this pull request?
This PR is to implement UDF0. `UDF0` is needed when users need to implement a JAVA UDF with no argument.

### How was this patch tested?
Added a test case

Author: gatorsmile <gatorsmile@gmail.com>

Closes #18598 from gatorsmile/udf0.
## What changes were proposed in this pull request?
Hive interprets regular expression, e.g., `(a)?+.+` in query specification. This PR enables spark to support this feature when hive.support.quoted.identifiers is set to true.

## How was this patch tested?

- Add unittests in SQLQuerySuite.scala
- Run spark-shell tested the original failed query:
scala> hc.sql("SELECT `(a|b)?+.+` from test1").collect.foreach(println)

Author: Jane Wang <janewang@fb.com>

Closes #18023 from janewangfb/support_select_regex.
[https://issues.apache.org/jira/browse/SPARK-21382](https://issues.apache.org/jira/browse/SPARK-21382)
There should be "Note that support for Scala 2.10 is deprecated as of Spark 2.1.0 and may be removed in Spark 2.3.0",right?

Author: liuzhaokun <liu.zhaokun@zte.com.cn>

Closes #18606 from liu-zhaokun/new07120923.
… thread gets UncaughtException

## What changes were proposed in this pull request?

Adding the default UncaughtExceptionHandler to the Worker.

## How was this patch tested?

I verified it manually, when any of the worker thread gets uncaught exceptions then the default UncaughtExceptionHandler will handle those exceptions.

Author: Devaraj K <devaraj@apache.org>

Closes #18357 from devaraj-kavali/SPARK-21146.
…tate store aborts after read-write state store commits

## What changes were proposed in this pull request?

During Streaming Aggregation, we have two StateStores per task, one used as read-only in
`StateStoreRestoreExec`, and one read-write used in `StateStoreSaveExec`. `StateStore.abort`
will be called for these StateStores if they haven't committed their results. We need to
make sure that `abort` in read-only store after a `commit` in the read-write store doesn't
accidentally lead to the deletion of state.

This PR adds a test for this condition.

## How was this patch tested?

This PR adds a test.

Author: Burak Yavuz <brkyvz@gmail.com>

Closes #18603 from brkyvz/ss-test.
### What changes were proposed in this pull request?
Hive 1.2.2 release is available. Below is the list of bugs fixed in 1.2.2

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12332952&styleName=Text&projectId=12310843

### How was this patch tested?
N/A

Author: Xiao Li <gatorsmile@gmail.com>

Closes #18063 from gatorsmile/upgradeHiveClientTo1.2.2.
…tive BLAS

## What changes were proposed in this pull request?

Many ML/MLLIB algorithms use native BLAS (like Intel MKL, ATLAS, OpenBLAS) to improvement the performance.
Many popular Native BLAS, like Intel MKL, OpenBLAS, use multi-threading technology, which will conflict with Spark.  Spark should provide options to disable multi-threading of Native BLAS.

https://github.com/xianyi/OpenBLAS/wiki/faq#multi-threaded
https://software.intel.com/en-us/articles/recommended-settings-for-calling-intel-mkl-routines-from-multi-threaded-applications

## How was this patch tested?
The existing UT.

Author: Peng Meng <peng.meng@intel.com>

Closes #18551 from mpjlu/optimzeBLAS.
## What changes were proposed in this pull request?
 Add  SQL function - RIGHT && LEFT, same as MySQL:
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_left
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_right

## How was this patch tested?
unit test

Author: liuxian <liu.xian3@zte.com.cn>

Closes #18228 from 10110346/lx-wip-0607.
…Formula inherit from HasHandleInvalid

## What changes were proposed in this pull request?
1, HasHandleInvaild support override
2, Make QuantileDiscretizer/Bucketizer/StringIndexer/RFormula inherit from HasHandleInvalid

## How was this patch tested?
existing tests

[JIRA](https://issues.apache.org/jira/browse/SPARK-18619)

Author: Zheng RuiFeng <ruifengz@foxmail.com>

Closes #18582 from zhengruifeng/heritate_HasHandleInvalid.
…all does not compare strings

## What changes were proposed in this pull request?

Currently, `RowDataSourceScanExec` and `FileSourceScanExec` rely on a "metadata" string map to implement equality comparison, since the RDDs they depend on cannot be directly compared. This has resulted in a number of correctness bugs around exchange reuse, e.g. SPARK-17673 and SPARK-16818.

To make these comparisons less brittle, we should refactor these classes to compare constructor parameters directly instead of relying on the metadata map.

This PR refactors `RowDataSourceScanExec`, `FileSourceScanExec` will be fixed in the follow-up PR.

## How was this patch tested?

existing tests

Author: Wenchen Fan <wenchen@databricks.com>

Closes #18600 from cloud-fan/minor.
…oader

## What changes were proposed in this pull request?

`ClassLoader` will preferentially load class from `parent`. Only when `parent` is null or the load failed, that it will call the overridden `findClass` function. To avoid the potential issue caused by loading class using inappropriate class loader, we should set the `parent` of `ClassLoader` to null, so that we can fully control which class loader is used.

This is take over of #17074,  the primary author of this PR is taroplus .

Should close #17074 after this PR get merged.

## How was this patch tested?

Add test case in `ExecutorClassLoaderSuite`.

Author: Kohki Nishio <taroplus@me.com>
Author: Xingbo Jiang <xingbo.jiang@databricks.com>

Closes #18614 from jiangxb1987/executor_classloader.
## What changes were proposed in this pull request?

- Remove Scala 2.10 build profiles and support
- Replace some 2.10 support in scripts with commented placeholders for 2.12 later
- Remove deprecated API calls from 2.10 support
- Remove usages of deprecated context bounds where possible
- Remove Scala 2.10 workarounds like ScalaReflectionLock
- Other minor Scala warning fixes

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #17150 from srowen/SPARK-19810.
## What changes were proposed in this pull request?

This PR upgrades jetty to the latest version 9.3.20.v20170531. The version includes the fix of CVE-2017-9735.

Here are links to descriptions for CVE-2017-9735.
* https://nvd.nist.gov/vuln/detail/CVE-2017-9735
* jetty/jetty.project#1556

Here is [a release note](https://github.com/eclipse/jetty.project/blob/jetty-9.3.x/VERSION.txt) for the latest jetty

## How was this patch tested?

tested by existing test suites

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #18601 from kiszk/SPARK-21373.
## What changes were proposed in this pull request?
Fixes --packages flag for mesos in cluster mode. Probably I will handle standalone and Yarn in another commit, I need to investigate those cases as they are different.

## How was this patch tested?
Tested with a community 1.9 dc/os cluster. packages were successfully resolved in cluster mode within a container.

andrewor14  susanxhuynh ArtRand srowen  pls review.

Author: Stavros Kontopoulos <st.kontopoulos@gmail.com>

Closes #18587 from skonto/fix_packages_mesos_cluster.
## What changes were proposed in this pull request?

Shade JPMML classes (`org.jpmml.**`) and related PMML model classes (`org.dmg.pmml.**`). This insulates downstream users from the version of JPMML in Spark, allows us to upgrade more freely, and allows downstream users to use a different version. JPMML minor releases are not generally forwards/backwards compatible.

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #18584 from srowen/SPARK-15526.
…the staging files in long running scenario

## What changes were proposed in this pull request?

This issue happens in long running application with yarn cluster mode, because yarn#client doesn't sync token with AM, so it will always keep the initial token, this token may be expired in the long running scenario, so when yarn#client tries to clean up staging directory after application finished, it will use this expired token and meet token expire issue.

## How was this patch tested?

Manual verification is secure cluster.

Author: jerryshao <sshao@hortonworks.com>

Closes #18617 from jerryshao/SPARK-21376.
When localizing the gateway config files in a YARN application, avoid
overwriting final configs by distributing the gateway files to a separate
directory, and explicitly loading them into the Hadoop config, instead
of placing those files before the cluster's files in the classpath.

This is done by saving the gateway's config to a separate XML file
distributed with the rest of the Spark app's config, and loading that
file when creating a new config through `YarnSparkHadoopUtil`.

Tested with existing unit tests, and by verifying the behavior in a YARN
cluster (final values are not overridden, non-final values are).

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #18370 from vanzin/SPARK-9825.
…e and sink using it

## What changes were proposed in this pull request?

Add the query id as a local property to allow source and sink using it.

## How was this patch tested?

The new unit test.

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #18638 from zsxwing/SPARK-21421.
…rison

## What changes were proposed in this pull request?

This PR fixes a wrong comparison for `BinaryType`. This PR enables unsigned comparison and unsigned prefix generation for an array for `BinaryType`. Previous implementations uses signed operations.

## How was this patch tested?

Added a test suite in `OrderingSuite`.

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #18571 from kiszk/SPARK-21344.
…-guide redirector

## What changes were proposed in this pull request?

Update internal references from programming-guide to rdd-programming-guide

See apache/spark-website@5ddf243 and #18485 (comment)

Let's keep the redirector even if it's problematic to build, but not rely on it internally.

## How was this patch tested?

(Doc build)

Author: Sean Owen <sowen@cloudera.com>

Closes #18625 from srowen/SPARK-21267.2.
…or both features and label column.

## What changes were proposed in this pull request?
```RFormula``` should handle invalid for both features and label column.
#18496 only handle invalid values in features column. This PR add handling invalid values for label column and test cases.

## How was this patch tested?
Add test cases.

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #18613 from yanboliang/spark-20307.
…e Scala 2.10

## What changes were proposed in this pull request?

Follow up to a few comments on #17150 (comment) that couldn't be addressed before it was merged.

## How was this patch tested?

Existing tests.

Author: Sean Owen <sowen@cloudera.com>

Closes #18646 from srowen/SPARK-19810.2.
…han one sources

### What changes were proposed in this pull request?
The build-in functions `input_file_name`, `input_file_block_start`, `input_file_block_length` do not support more than one sources, like what Hive does. Currently, Spark does not block it and the outputs are ambiguous/non-deterministic. It could be from any side.

```
hive> select *, INPUT__FILE__NAME FROM t1, t2;
FAILED: SemanticException Column INPUT__FILE__NAME Found in more than One Tables/Subqueries
```

This PR blocks it and issues an error.

### How was this patch tested?
Added a test case

Author: gatorsmile <gatorsmile@gmail.com>

Closes #18580 from gatorsmile/inputFileName.
…unction support in UDF in PySpark

## What changes were proposed in this pull request?

This PR proposes to avoid `__name__` in the tuple naming the attributes assigned directly from the wrapped function to the wrapper function, and use `self._name` (`func.__name__` or `obj.__class__.name__`).

After SPARK-19161, we happened to break callable objects as UDFs in Python as below:

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
```

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".../spark/python/pyspark/sql/functions.py", line 2142, in udf
    return _udf(f=f, returnType=returnType)
  File ".../spark/python/pyspark/sql/functions.py", line 2133, in _udf
    return udf_obj._wrapped()
  File ".../spark/python/pyspark/sql/functions.py", line 2090, in _wrapped
    functools.wraps(self.func)
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/functools.py", line 33, in update_wrapper
    setattr(wrapper, attr, getattr(wrapped, attr))
AttributeError: F instance has no attribute '__name__'
```

This worked in Spark 2.1:

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
spark.range(1).select(udf("id")).show()
```

```
+-----+
|F(id)|
+-----+
|    0|
+-----+
```

**After**

```python
from pyspark.sql import functions

class F(object):
    def __call__(self, x):
        return x

foo = F()
udf = functions.udf(foo)
spark.range(1).select(udf("id")).show()
```

```
+-----+
|F(id)|
+-----+
|    0|
+-----+
```

_In addition, we also happened to break partial functions as below_:

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
```

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".../spark/python/pyspark/sql/functions.py", line 2154, in udf
    return _udf(f=f, returnType=returnType)
  File ".../spark/python/pyspark/sql/functions.py", line 2145, in _udf
    return udf_obj._wrapped()
  File ".../spark/python/pyspark/sql/functions.py", line 2099, in _wrapped
    functools.wraps(self.func, assigned=assignments)
  File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/functools.py", line 33, in update_wrapper
    setattr(wrapper, attr, getattr(wrapped, attr))
AttributeError: 'functools.partial' object has no attribute '__module__'
```

This worked in Spark 2.1:

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
spark.range(1).select(udf()).show()
```

```
+---------+
|partial()|
+---------+
|        1|
+---------+
```

**After**

```python
from pyspark.sql import functions
from functools import partial

partial_func = partial(lambda x: x, x=1)
udf = functions.udf(partial_func)
spark.range(1).select(udf()).show()
```

```
+---------+
|partial()|
+---------+
|        1|
+---------+
```

## How was this patch tested?

Unit tests in `python/pyspark/sql/tests.py` and manual tests.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #18615 from HyukjinKwon/callable-object.
@yaozhang2016 yaozhang2016 merged commit 82af760 into yaozhang2016:master Jul 17, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.