- 01 The Spiral Memory Problem - see Peter Norvig's solution here.
- 02 Number Finding
- 03 Grammar - see solution in lecture 01.
See Gao's solutions here.
- Representation
- Calulus
- Logic
- Linear Algebra
- Probability
- Graph
- Dynamic Programming (动态规划)
- 人工智能主要内容介绍
- 人工智能主要解决的问题
- 两个维度 --- ”类人“与”理性“
- 如何自动化“智慧”
- 自然语言处理解决问题的难点
- text = logic
- unstructured data
- diversity & hetereogeneity
- 人工智能解决问题的范式--Part-1
- 基于搜索 (BFS & DFS; Map application & Decision Tree)
- 基于规则,从规则驱动到数据驱动 (From Rules to Data-Driven)
- 基于数学分析 -- (第二课)
- 基于概率 -- (第二课)
- 基于机器学习 -- (第三课)
- Assignment 01 -- 基于规则实现简单中文对话
- Language Models
- from rule-based to probability-based
- one-gram and two-gram models
- using regular expressions
- Assignment 02 -- implement language models using the Wikipedia corpus
- Simple Machine Learning Models
- Heuristic Search
- from BFS, DFS to best-first search
- Assignment 03 -- implement a search agent using the Beijing Subway data
- Dyanmic Programming
- three steps for solving a DP problem:
-
- 分析子问题重复性;
-
- 将子问题的解存储起来;
-
- 解析和构建solution
-
- three steps for solving a DP problem:
- Basic NLP methods
- edit distance
- Assignment 04 -- finish the edit distance solution parsing
- Word Embedding
- from edit distance to word embedding (why?)
- Word2Vec
- Name Entity Recogntion & Dependency Parsing
- Keywords Extraction
- from word2vec to vectorizing chunks of text
- TF-IDF (Term Frequency-Inverse Document Frequency)
- Word cloud
- Scikit-learning & simple classification model
- cosine similarity
- Search Engine
- boolean search
- from the naive search (TF-IDF) to page rank
- Group project 01 - keywords extraction & search using the news corpus
- Basic ML Methods
- Supervised learning:
- linear & logistic regressions (gradient descent, MSE, loss function, cross-entropy)
- KNN
- SVM (kernel function, support vector)
- Naïve Bayesian Classfier
- Decision Tree
- Random Forest (XGBoost)
- Unsupervised learning:
- Clustering (hierarchical, k-means)
- Embedding cluster
- Semi-supervised & active learning
- Supervised learning:
- Model evaluation:
- Underfitting vs. Overfitting
- precision, recall, F1, F2, MSE, loss function
- bias & variance
- Preprocessing data:
- balance, noise, colinearity, normalization/rescaling
- Neural Networks
- the rise of NN
- architecture of NN (layers, activation fucntion, back propagation)
- loss function, cross-entropy, (stochastic) gradient descent
- implementing a simple NN
- tensorflow, keras, pytorch