forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added examples for random and sampled RDDs:
* Scala: RandomAndSampledRDDs.scala * python: random_and_sampled_rdds.py * Both test: ** RandomRDDGenerators.normalRDD, normalVectorRDD ** RDD.sample, takeSample, sampleByKey
- Loading branch information
Showing
3 changed files
with
202 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
""" | ||
Randomly generated and sampled RDDs. | ||
""" | ||
|
||
import sys | ||
|
||
from pyspark import SparkContext | ||
from pyspark.mllib.random import RandomRDDGenerators | ||
from pyspark.mllib.util import MLUtils | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
if len(sys.argv) not in [1, 2]: | ||
print >> sys.stderr, "Usage: logistic_regression <libsvm data file>" | ||
exit(-1) | ||
if len(sys.argv) == 2: | ||
datapath = sys.argv[1] | ||
else: | ||
datapath = 'data/mllib/sample_binary_classification_data.txt' | ||
|
||
sc = SparkContext(appName="PythonRandomAndSampledRDDs") | ||
|
||
points = MLUtils.loadLibSVMFile(sc, datapath) | ||
|
||
numExamples = 10000 # number of examples to generate | ||
fraction = 0.1 # fraction of data to sample | ||
|
||
# Example: RandomRDDGenerators | ||
normalRDD = RandomRDDGenerators.normalRDD(sc, numExamples) | ||
print 'Generated RDD of %d examples sampled from a unit normal distribution' % normalRDD.count() | ||
normalVectorRDD = RandomRDDGenerators.normalVectorRDD(sc, numRows = numExamples, numCols = 2) | ||
print 'Generated RDD of %d examples of length-2 vectors.' % normalVectorRDD.count() | ||
|
||
print '' | ||
|
||
# Example: RDD.sample() and RDD.takeSample() | ||
exactSampleSize = int(numExamples * fraction) | ||
print 'Sampling RDD using fraction %g. Expected sample size = %d.' \ | ||
% (fraction, exactSampleSize) | ||
sampledRDD = normalRDD.sample(withReplacement = True, fraction = fraction) | ||
print ' RDD.sample(): sample has %d examples' % sampledRDD.count() | ||
sampledArray = normalRDD.takeSample(withReplacement = True, num = exactSampleSize) | ||
print ' RDD.takeSample(): sample has %d examples' % len(sampledArray) | ||
|
||
print '' | ||
|
||
# Example: RDD.sampleByKey() | ||
examples = MLUtils.loadLibSVMFile(sc, datapath) | ||
sizeA = examples.count() | ||
print 'Loaded data with %d examples from file: %s' % (sizeA, datapath) | ||
keyedRDD = examples.map(lambda lp: (int(lp.label), lp.features)) | ||
print ' Keyed data using label (Int) as key ==> Orig' | ||
# Count examples per label in original data. | ||
keyCountsA = keyedRDD.countByKey() | ||
# Subsample, and count examples per label in sampled data. | ||
fractions = {} | ||
for k in keyCountsA.keys(): | ||
fractions[k] = fraction | ||
sampledByKeyRDD = \ | ||
keyedRDD.sampleByKey(withReplacement = True, fractions = fractions)#, exact = True) | ||
keyCountsB = sampledByKeyRDD.countByKey() | ||
sizeB = sum(keyCountsB.values()) | ||
print ' Sampled %d examples using approximate stratified sampling (by label). ==> Sample' \ | ||
% sizeB | ||
print ' \tFractions of examples with key' | ||
print 'Key\tOrig\tSample' | ||
for k in sorted(keyCountsA.keys()): | ||
print '%d\t%g\t%g' % (k, keyCountsA[k] / float(sizeA), keyCountsB[k] / float(sizeB)) | ||
|
||
sc.stop() |
110 changes: 110 additions & 0 deletions
110
examples/src/main/scala/org/apache/spark/examples/mllib/RandomAndSampledRDDs.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.mllib | ||
|
||
import org.apache.spark.mllib.random.RandomRDDGenerators | ||
import org.apache.spark.mllib.util.MLUtils | ||
import org.apache.spark.rdd.RDD | ||
import scopt.OptionParser | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.SparkContext._ | ||
|
||
/** | ||
* An example app for randomly generated and sampled RDDs. Run with | ||
* {{{ | ||
* bin/run-example org.apache.spark.examples.mllib.RandomAndSampledRDDs | ||
* }}} | ||
* If you use it as a template to create your own app, please use `spark-submit` to submit your app. | ||
*/ | ||
object RandomAndSampledRDDs extends App { | ||
|
||
case class Params(input: String = "data/mllib/sample_binary_classification_data.txt") | ||
|
||
val defaultParams = Params() | ||
|
||
val parser = new OptionParser[Params]("RandomAndSampledRDDs") { | ||
head("RandomAndSampledRDDs: an example app for randomly generated and sampled RDDs.") | ||
opt[String]("input") | ||
.text(s"Input path to labeled examples in LIBSVM format, default: ${defaultParams.input}") | ||
.action((x, c) => c.copy(input = x)) | ||
note( | ||
""" | ||
|For example, the following command runs this app: | ||
| | ||
| bin/spark-submit --class org.apache.spark.examples.mllib.RandomAndSampledRDDs \ | ||
| examples/target/scala-*/spark-examples-*.jar | ||
""".stripMargin) | ||
} | ||
|
||
parser.parse(args, defaultParams).map { params => | ||
run(params) | ||
} getOrElse { | ||
sys.exit(1) | ||
} | ||
|
||
def run(params: Params) { | ||
val conf = new SparkConf().setAppName(s"RandomAndSampledRDDs with $params") | ||
val sc = new SparkContext(conf) | ||
|
||
val numExamples = 10000 // number of examples to generate | ||
val fraction = 0.1 // fraction of data to sample | ||
|
||
// Example: RandomRDDGenerators | ||
val normalRDD: RDD[Double] = RandomRDDGenerators.normalRDD(sc, numExamples) | ||
println(s"Generated RDD of ${normalRDD.count()} examples sampled from a unit normal distribution") | ||
val normalVectorRDD = | ||
RandomRDDGenerators.normalVectorRDD(sc, numRows = numExamples, numCols = 2) | ||
println(s"Generated RDD of ${normalVectorRDD.count()} examples of length-2 vectors.") | ||
|
||
println() | ||
|
||
// Example: RDD.sample() and RDD.takeSample() | ||
val exactSampleSize = (numExamples * fraction).toInt | ||
println(s"Sampling RDD using fraction $fraction. Expected sample size = $exactSampleSize.") | ||
val sampledRDD = normalRDD.sample(withReplacement = true, fraction = fraction) | ||
println(s" RDD.sample(): sample has ${sampledRDD.count()} examples") | ||
val sampledArray = normalRDD.takeSample(withReplacement = true, num = exactSampleSize) | ||
println(s" RDD.takeSample(): sample has ${sampledArray.size} examples") | ||
|
||
println() | ||
|
||
// Example: RDD.sampleByKey() | ||
val examples = MLUtils.loadLibSVMFile(sc, params.input) | ||
val sizeA = examples.count() | ||
println(s"Loaded data with $sizeA examples from file: ${params.input}") | ||
val keyedRDD = examples.map { lp => (lp.label.toInt, lp.features) } | ||
println(s" Keyed data using label (Int) as key ==> Orig") | ||
// Count examples per label in original data. | ||
val keyCountsA = keyedRDD.countByKey() | ||
// Subsample, and count examples per label in sampled data. | ||
val fractions = keyCountsA.keys.map((_, fraction)).toMap | ||
val sampledByKeyRDD = | ||
keyedRDD.sampleByKey(withReplacement = true, fractions = fractions, exact = true) | ||
val keyCountsB = sampledByKeyRDD.countByKey() | ||
val sizeB = keyCountsB.values.sum | ||
println(s" Sampled $sizeB examples using exact stratified sampling (by label). ==> Sample") | ||
println(s" \tFractions of examples with key") | ||
println(s"Key\tOrig\tSample") | ||
keyCountsA.keys.toSeq.sorted.foreach { key => | ||
println(s"$key\t${keyCountsA(key) / sizeA.toDouble}\t${keyCountsB(key) / sizeB.toDouble}") | ||
} | ||
|
||
sc.stop() | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters