Predict height by gender and genotypes.
Specimen file as below: 5 columns (label, name, gender, height, date of birth, age)
GW7S0140C01 张三 male 176 1954-03-05
GW7S0140C02 李四 female 170 1992-12-28 26
GW7S0140C03 王五 male 175 1957-10-01
Genotype file as below: 4 columns (label, rs, allele1, allele2)
GW7S0140C01 rs12688220 T T
GW7S0140C01 rs5912838 A C
GW7S0140C01 rs137852591 C C
GW7S0140C01 rs267606617 A A
GW7S0140C01 rs267606619 C C
Parse files
python parse_inputs.py -s <specimen_file> -g <genotype_file> -o <output_file> -l
Genotype file as below: 3 columns (rs, allele1, allele2)
rs12688220 T T
rs5912838 A C
rs137852591 C C
rs267606617 A A
rs267606619 C C
Parse file
python parse_inputs.py -g <genotype_file> -o <output_file> --gender=<gender>
Use train datasets from parsed train datasets above, will train models and save model to models(default) directory.
python train.py <tain_datesets>
Use target datasets from parsed predict datasets above, will output predicted height by model.
python predict.py <target_datasets>