Skip to content

wubowen416/co-speech-gesture-generation-using-CGAN

Repository files navigation

co-speech-gesture-generation-using-CGAN

Introduction

Official implementation for paper https://doi.org/10.3390/electronics10030228.

Requirement

Required packages: pandas, tqdm, pydub, parselmouth, numpy, pyquaternion, pytorch ffmpeg is required for example_scripts/gen_all_models.sh

Usage

Directly use pre-trained model to generate motions.

The model we selected is stored as pre_trained_model/unroll_1000.pt. Parameters are compatible with class Generator in models.py.

  1. Clone this repository
  2. Download a dataset from https://www.dropbox.com/sh/j419kp4m8hkt9nd/AAC_pIcS1b_WFBqUp5ofBG1Ia?dl=0
  3. Create a directory named dataset and put two directories motion/ and speech/ under dataset/
  4. python data_processing/prepare_data.py data to split dataset to train, dev, and test set (as we used data in train set to scale input and output). Then run python data_processing/create_vector.py
  5. Play with generating.py. Arguments of this function are: (1)wav file path, (2)output save path, (3)(optional)model parameters path. This function will process wav file and produce motion using parameters provided. You can specify the noise vector used to generate motions as one argument for function generate_motion. The result will be .npy format. E.g.,
python generating.py data/test/inputs/audio1094.wav test_output.npy -mp pre_trained_model/unroll_1000.pt
  1. If you want to see video, use example_scripts/make_mute_mp4.py. The first argument is to specify .npy file, the second argument is to set save path. However, the video is without audio.E.g.,
python example_scripts/make_mute_mp4.py test_output.npy test_video.mp4
  1. Attach audio to the mute video(ffmpeg required). Or you can find your own way.
ffmpeg -i test_video.mp4 -i data/test/inputs/audio1094.wav -c:v copy -map 0:v:0 -map 1:a:0 test_video.mp4

Train your own model(GPU only)

Notice GAN is not guaranteed to produce same result for every training, so your result could be different from ours.

  1. Following 1-4 in Directly use pre-trained model to generate motions.
  2. python train.py to train a new model. The architecture of model is defined in models.py. Hyper-parameters are defined in train.py. Params of generator are periodically saved during training.
  3. You may want to check your result. example_scripts/gen_all_models.sh is a function for generating videos with audio for all saved models for one audio input.

Citation

To cite our work, you can use the following BibTex reference

@article{wu2021modeling,
  title={Modeling the conditional distribution of co-speech upper body gesture jointly using conditional-GAN and unrolled-GAN},
  author={Wu, Bowen and Liu, Chaoran and Ishi, Carlos Toshinori and Ishiguro, Hiroshi},
  journal={Electronics},
  volume={10},
  number={3},
  pages={228},
  year={2021},
  publisher={Multidisciplinary Digital Publishing Institute}
}

Contact

For any question, please contact wu.bowen@irl.sys.es.osaka-u.ac.jp