Skip to content

Code repo for "Agent Instructs Large Language Models to be General Zero-Shot Reasoners"

License

Notifications You must be signed in to change notification settings

wang-research-lab/agentinstruct

Repository files navigation

AgentInstruct: Agent Instructs Large Language Models to be General Zero-Shot Reasoners

The source code repo for paper Agent Instructs Large Language Models to be General Zero-Shot Reasoners.

📃 [Paper] • 💻 [Github] • 🤗 [HuggingFace] • 📌 [Blog] • 📽 [Slides] • 📋 [Poster]

News

  • May, 2024: AgentInstruct is accepted to ICML 2024.
  • March, 2024: AgentInstruct is accepted to ICLR 2024 workshop LLMAgents.

Installation

Begin by cloning this repository:

git clone --recurse-submodules https://github.com/wang-research-lab/agentinstruct.git

Then, run the following to implement zero-shot AgentInstruct into the HELM submodule:

cd agentinstruct
bash src/agentinstruct/reasoning/helm_updates/update_helm.sh

Now, add the following api keys to prod_env/credentials.conf: openaiApiKey (from here) and bingSubscriptionKey (from here). Use the following format:

openaiApiKey: [your key here]
bingSubscriptionKey: [your key here]

We would recommend using a Python 3.10 docker image.

docker network create mynetwork
docker pull python:3.10
docker run --network=mynetwork -v ~/agentinstruct:/code/agentinstruct -it python:3.10 bash

Next, create a virtual enviroment:

cd /code/agentinstruct
python3 -m pip install virtualenv
python3 -m virtualenv -p python3.10 helm-venv
source helm-venv/bin/activate

Run the following to download the necessary dependencies:

pip install -e src/agentinstruct/reasoning/helm
pip install -r requirements.txt

Note: For running other models (vicuna-13b, llama-2-7b-chat, llama-2-13b-chat, llama-2-70b-chat), you must also follow the instructions here.

Replicating Main Results

To replicate the main results on 28 datasets (excludes NewsQA for its license restrictions, see here) with a specific model (gpt-3.5-turbo, llama-2-7b-chat, llama-2-13b-chat, llama-2-70b-chat, vicuna-13b), run:

bash scripts/gpt-3.5-turbo.sh
bash scripts/llama-2-7b-chat.sh
bash scripts/llama-2-13b-chat.sh
bash scripts/llama-2-70b-chat.sh
bash scripts/vicuna-13b.sh

Results will be stored in benchmark_outputs/runs/{model}-agentinstruct/results.csv.

Customizing your Run

There are three key components of the zero-shot AgentInstruct pipeline: (1) generating agent instructions, (2) running reasoning steps with the instructions, and (3) formatting the results. In this section, we will look at each component in detail, focusing on a single dataset: AddSub. Note that nothing here is specific to AddSub, and can be applied to any dataset, or even a combination of datasets!

Generating Agent Instructions

First, to generate the agent instructions for AddSub, run the following:

bash scripts/generate_agent_instructions.sh scripts/run_specs/simple-gpt-3.5-turbo.conf addsub

We'll create a configuration file that specifies the run configuration. As an example, we'll look at the configuration file scripts/run_specs/simple-gpt-3.5-turbo.conf, which specifies the configuration of running the AddSub dataset using GPT-3.5 Turbo:

entries: [
    {description: "addsub:model=openai/gpt-3.5-turbo-0301,max_train_instances=0,instructions=agentinstruct", priority: 1}
]

The agent instructions for the AddSub dataset will be saved in instructions/addsub/instructions.json. The agent's input, as well as the web sources used and intermediate prompts, will be saved under instructions/addsub/inputs.json and instructions/addsub/metadata.json respectively.

Running Reasoning Steps

We'll use the same configuration file as above. To run reasoning steps with zero-shot AgentInstruct on AddSub, run the following:

bash scripts/run_reasoning.sh scripts/run_specs/simple-gpt-3.5-turbo.conf addsub 1000

The first two parameters are identical to those above, and the third represents the number of instances to run reasoning steps on. The results will be stored in benchmark_outputs/runs/addsub.

Note: By default, zero-shot AgentInstruct reasoning will be done using the latest set of instructions generated. To run reasoning with the instructions used in the paper, run this script before the run_reasoning command:

python scripts/replicate.py

Formatting Results

To easily format the evaluation results, run:

python src/agentinstruct/eval/format_results.py --suite addsub

The evaluation results will be saved in benchmark_output/runs/addsub/results.csv. To see the full text output by instance, open benchmark_output/runs/addsub/'addsub:model=openai_gpt-3.5-turbo-0301,max_train_instances=0,instructions=agentinstruct'/scenario_state.json and search for full_text.

Note: Normally, the results are formatted after all the run spec descriptions in the configuration file have been run. To see for a single run spec description, view:

benchmark_output/runs/addsub/'addsub:model=openai_gpt-3.5-turbo-0301,max_train_instances=0,instructions=agentinstruct'/stats.json

All Together Now

To run the above entire AgentInstruct pipeline in one go, run:

bash scripts/run.sh scripts/run_specs/simple-gpt-3.5-turbo.conf addsub 1000

This will run all 3 steps outlined above, and store the result in benchmark_outputs/runs/addsub.

Arguments

In this section, we'll cover various important run arguments.

Run Configuration Arguments

A run spec describes a specific dataset to run. For example, the run spec for AddSub used above is:

{description: "addsub:model=openai/gpt-3.5-turbo-0301,max_train_instances=0,instructions=agentinstruct", priority: 1}
argument description options
model Model to use for inference. local/vicuna-13b
local/llama-2-7b-chat
local/llama-2-13b-chat
local/llama-2-70b-chat
openai/gpt-3.5-turbo-0301
max_train_instances Number of few shot examples to prepend. Few Shot is not recommended. int
instructions Optional prompting method to use. None corresponds to standard zeroshot. agentinstruct
zeroshotcot
None

Note: Several datasets have additional argument to specify the specific subset or task.

Generating Agent Instructions Arguments

The main script to generate agent instructions is scripts/generate_agent_instructions.sh. It takes the following 2 positional arguments:

argument description options
1st Path to run spec file. str
2nd Suite name under which to save instructions. str

Internally, the agent instructions are generated by first running dataset preprocessing (in src/agentinstruct/agent/utils/dataset_preprocessing.py) and then running the instruction generation (in src/agentinstruct/agent/agent_instr_generation.py). These are combined in src/agentinstruct/agent/agent_pipeline.py and called by scripts/generate_agent_instructions.sh. GPT-4 is used as the agent LLM as in our paper.

Running Reasoning Arguments

The main script to run reasoning is scripts/run_reasoning.sh, which internally calls helm-run. It takes the following 4 positional arguments, as well as a placeholder for any additional argument to pass to helm-run:

argument description options
1st Path to run spec file. str
2nd Suite name under which to save outputs. str
3rd Maximum number of instances to run. int
4th Maximum number of threads from which to send requests. Defaults to 8 for all models. int
5th Place holder for any additional argument to pass to helm-run. str

Formatting Results Arguments

The main script to format the results is src/agentinstruct/eval/format_results.py. It takes a single named argument:

argument description options
--suite Suite name under which to find outputs. str

Replicating Additional Results

To replicate the zero-shot (zeroshot) and zero-shot CoT (zeroshotcot) modes, run:

bash scripts/run_reasoning.sh scripts/run_specs/{mode}/{model}-{mode}.conf {model}-{mode} 1000 8
python src/agentinstruct/eval/format_results.py --suite {model}-{mode}

where {mode} is zeroshot or zeroshotcot and {model} is vicuna-13b, llama-2-7b-chat, llama-2-13b-chat, llama-2-70b-chat, or gpt-3.5-turbo.

Note: For standard zero-shot runs, pass skip-expander as the 5th positional argument.

Citation

@inproceedings{crispino2023agent,
  title={Agent Instructs Large Language Models to be General Zero-Shot Reasoners},
  author={Crispino, Nicholas and Montgomery, Kyle and Zeng, Fankun and Song, Dawn and Wang, Chenguang},
  booktitle={Forty-first International Conference on Machine Learning},
  year={2024}
}