Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Refactor and decouple weight loading logic for InternVL2 model #7067

Merged
merged 2 commits into from
Aug 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion vllm/model_executor/models/intern_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional
from typing import Iterable, Optional, Tuple

import torch
import torch.nn as nn
Expand All @@ -16,6 +16,7 @@
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader

NORM2FN = {
'rms_norm': RMSNorm,
Expand Down Expand Up @@ -268,3 +269,11 @@ def forward(
encoder_outputs = self.encoder(inputs_embeds=hidden_states)

return encoder_outputs

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
82 changes: 28 additions & 54 deletions vllm/model_executor/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import itertools
from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union

import torch
Expand Down Expand Up @@ -414,58 +415,31 @@ def sample(
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
(".gate_up_proj", ".w1", 0),
(".gate_up_proj", ".w3", 1),
]
params_dict = dict(self.named_parameters())
def _filter_weights(self, weights: Iterable[Tuple[str, torch.Tensor]],
prefix: str):
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if self.config.text_config.tie_word_embeddings \
and "lm_head.weight" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# We only do sharding for language model
# and not vision model for now.
if "vision_embed_tokens" in name and self.vision_embed_tokens:
continue
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
if "wqkv" in name:
config = self.config.text_config
kv_groups = (config.num_attention_heads //
config.num_key_value_heads)
head_dim = config.hidden_size // config.num_attention_heads
loaded_weight = loaded_weight.view(-1, 2 + kv_groups,
head_dim,
loaded_weight.shape[-1])
wq, wk, wv = torch.split(loaded_weight, [kv_groups, 1, 1],
dim=1)
wq = wq.reshape(-1, wq.shape[-1])
wk = wk.reshape(-1, wk.shape[-1])
wv = wv.reshape(-1, wv.shape[-1])
weight_loader = param.weight_loader
weight_loader(param, wq, 'q')
weight_loader(param, wk, 'k')
weight_loader(param, wv, 'v')
continue
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
name = name.split(".")
if prefix == name.pop(0):
name = ".".join(name)
yield name, loaded_weight

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# prepare weight iterators for components
vit_weights, mlp_weights, llm_weights = itertools.tee(weights, 3)

# load vision encoder
vit_weights = self._filter_weights(vit_weights, "vision_model")
self.vision_model.load_weights(vit_weights)

# load mlp projector
mlp_weights = self._filter_weights(mlp_weights, "mlp1")
mlp_params_dict = dict(self.mlp1.named_parameters())
for name, loaded_weight in mlp_weights:
param = mlp_params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

# load llm backbone
llm_weights = self._filter_weights(llm_weights, "language_model")
self.language_model.load_weights(llm_weights)
Loading