Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Disambiguate quantized types via a new ScalarType #6396

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 35 additions & 17 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,39 @@ endif()
#
find_package(Torch REQUIRED)

#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
message(STATUS "Enabling core extension.")

# Define _core_C extension
# built for (almost) every target platform, (excludes TPU and Neuron)

set(VLLM_EXT_SRC
"csrc/core/torch_bindings.cpp")

define_gpu_extension_target(
_core_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI)

add_dependencies(default _core_C)

#
# Forward the non-CUDA device extensions to external CMake scripts.
#
Expand All @@ -74,7 +107,7 @@ if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
return()
endif()
return()
endif()
Expand Down Expand Up @@ -132,7 +165,7 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
endif()

#
# Define extension targets
# Define other extension targets
#

#
Expand Down Expand Up @@ -228,21 +261,6 @@ define_gpu_extension_target(



#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)

if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
Expand Down
3 changes: 3 additions & 0 deletions Dockerfile.openvino
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,9 @@ COPY requirements-common.txt /workspace/vllm/
COPY requirements-openvino.txt /workspace/vllm/

COPY vllm/ /workspace/vllm/vllm
COPY csrc/core /workspace/vllm/csrc/core
COPY cmake/utils.cmake /workspace/vllm/cmake/
COPY CMakeLists.txt /workspace/vllm/
COPY setup.py /workspace/vllm/

# install build requirements
Expand Down
50 changes: 27 additions & 23 deletions benchmarks/kernels/benchmark_marlin.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,16 +7,17 @@
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES, MARLIN_SUPPORTED_NUM_BITS)
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)
gptq_pack, gptq_quantize_weights, sort_weights)
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser

DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
Expand All @@ -27,13 +28,14 @@


def bench_run(results: List[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, num_bits: int, group_size: int,
size_m: int, size_k: int, size_n: int):
act_order: bool, is_k_full: bool, quant_type: ScalarType,
group_size: int, size_m: int, size_k: int, size_n: int):
label = "Quant Matmul"

sub_label = ("{}, act={} k_full={}, b={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full, num_bits,
group_size, size_m, size_k, size_n))
sub_label = ("{}, act={} k_full={}, q={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full,
str(quant_type), group_size, size_m,
size_k, size_n))

print(f"Testing: {sub_label}")

Expand All @@ -50,18 +52,18 @@ def bench_run(results: List[benchmark.Measurement], model: str,
marlin_g_idx,
marlin_sort_indices,
marlin_rand_perm,
) = marlin_quantize(b, num_bits, group_size, act_order)
) = marlin_quantize(b, quant_type, group_size, act_order)

# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b, num_bits, group_size)
marlin_24_s) = marlin_24_quantize(b, quant_type, group_size)

marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)

# GPTQ quant
(w_ref, q_w, s, g_idx,
rand_perm) = quantize_weights(b, num_bits, group_size, act_order)
q_w_gptq = gptq_pack(q_w, num_bits, size_k, size_n)
rand_perm) = gptq_quantize_weights(b, quant_type, group_size, act_order)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)

# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
Expand All @@ -75,10 +77,11 @@ def bench_run(results: List[benchmark.Measurement], model: str,

marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)

globals = {
# Gen params
"num_bits": num_bits,
"quant_type": quant_type,
"group_size": group_size,
"size_m": size_m,
"size_n": size_n,
Expand Down Expand Up @@ -128,7 +131,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, num_bits, size_m, size_n, size_k, is_k_full, False, False)", # noqa: E501
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
Expand All @@ -138,19 +141,19 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, num_bits, size_m, size_n, size_k, is_k_full, False, True)", # noqa: E501
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time))

if (num_bits in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
if (quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, num_bits, size_m, size_n, size_k)", # noqa: E501
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
Expand All @@ -160,7 +163,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, num_bits)", # noqa: E501
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
Expand Down Expand Up @@ -196,9 +199,10 @@ def main(args):
) > 0 and is_k_full not in args.limit_k_full:
continue

for num_bits in MARLIN_SUPPORTED_NUM_BITS:
if len(args.limit_num_bits
) > 0 and num_bits not in args.limit_num_bits:
for quant_type in query_marlin_supported_quant_types(
False):
if len(args.limit_num_bits) > 0 and \
quant_type.size_bits not in args.limit_num_bits:
continue

for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
Expand All @@ -215,8 +219,8 @@ def main(args):

for size_m in args.batch_sizes:
bench_run(results, model, act_order, is_k_full,
num_bits, group_size, size_m, size_k,
size_n)
quant_type, group_size, size_m,
size_k, size_n)

compare = benchmark.Compare(results)
compare.print()
Expand Down
1 change: 0 additions & 1 deletion cmake/cpu_extension.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,5 @@ define_gpu_extension_target(
WITH_SOABI
)

add_custom_target(default)
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
File renamed without changes.
Loading
Loading