Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Doc] Remove performance warning for auto_awq.md #12743

Merged
merged 1 commit into from
Feb 5, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 0 additions & 6 deletions docs/source/features/quantization/auto_awq.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,6 @@

# AutoAWQ

:::{warning}
Please note that AWQ support in vLLM is under-optimized at the moment. We would recommend using the unquantized version of the model for better
accuracy and higher throughput. Currently, you can use AWQ as a way to reduce memory footprint. As of now, it is more suitable for low latency
inference with small number of concurrent requests. vLLM's AWQ implementation have lower throughput than unquantized version.
:::

To create a new 4-bit quantized model, you can leverage [AutoAWQ](https://github.com/casper-hansen/AutoAWQ).
Quantizing reduces the model's precision from FP16 to INT4 which effectively reduces the file size by ~70%.
The main benefits are lower latency and memory usage.
Expand Down