Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Add FA2 support to ViT MHA layer #12355

Merged
merged 3 commits into from
Jan 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 126 additions & 0 deletions tests/kernels/test_mha_attn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
"""
Test:

* Tests for MultiHeadAttention layer
"""
from unittest.mock import patch

import pytest
import torch

from vllm.attention.layer import MultiHeadAttention
from vllm.attention.selector import _Backend, _cached_get_attn_backend
from vllm.platforms import current_platform
from vllm.platforms.cpu import CpuPlatform
from vllm.platforms.cuda import CudaPlatform
from vllm.platforms.rocm import RocmPlatform


@pytest.fixture(autouse=True)
def clear_cache():
"""Clear lru cache to ensure each test case runs without caching.
"""
_cached_get_attn_backend.cache_clear()


@pytest.mark.parametrize("device", ["cpu", "hip", "cuda"])
def test_mha_attn_platform(device: str):
"""
Test that the attention selector between different platform and device.
"""
torch.set_default_dtype(torch.float16)

if device == "cpu":
with patch("vllm.attention.selector.current_platform", CpuPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.TORCH_SDPA
elif device == "hip":
with patch("vllm.attention.selector.current_platform", RocmPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.TORCH_SDPA
else:
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
attn = MultiHeadAttention(16, 64, scale=1)
assert attn.attn_backend == _Backend.FLASH_ATTN

with patch("vllm.attention.selector.current_platform", CudaPlatform()):
attn = MultiHeadAttention(16, 72, scale=1)
assert attn.attn_backend == _Backend.XFORMERS


def ref_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
) -> torch.Tensor:
"""
Native implementation of scaled dot product attention without mask:
- query, key, value: [batch_size, seq_len, num_heads, head_size]
- attn_mask: [batch_size, seq_len, seq_len]
"""
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
attn_weights = scale * torch.matmul(query, key.transpose(2, 3))
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.matmul(attn_weights, value).transpose(1, 2)
return out


BATCH_SIZES = [1, 16]
SEQ_LENS = [1]
NUM_HEADS = [1, 16]
NUM_KV_HEADS = [1]
HEAD_SIZES = [64, 80]
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
DTYPES = [
torch.half, torch.bfloat16, torch.float
] if not current_platform.is_rocm() else [torch.half, torch.bfloat16]
CUDA_DEVICES = ["cuda"]


@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_kv_heads", NUM_KV_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_mha_attn_forward(
batch_size: int,
seq_len: int,
num_heads: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
device: str,
):
current_platform.seed_everything(0)
torch.set_default_device(device)
torch.set_default_dtype(dtype)

q = torch.randn(batch_size, seq_len, num_heads * head_size)
k = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
v = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
scale = 1.0 / head_size**0.5
attn = MultiHeadAttention(num_heads,
head_size,
scale=scale,
num_kv_heads=num_kv_heads)
output = attn(q, k, v)

assert num_heads % num_kv_heads == 0
num_queries_per_kv = num_heads // num_kv_heads
q = q.reshape(batch_size, seq_len, num_heads, head_size)
k = k.reshape(batch_size, seq_len, num_kv_heads, head_size)
v = v.reshape(batch_size, seq_len, num_kv_heads, head_size)
if num_queries_per_kv > 1:
k = torch.repeat_interleave(k, num_queries_per_kv, dim=2)
v = torch.repeat_interleave(v, num_queries_per_kv, dim=2)

ref_output = ref_attention(
q,
k,
v,
scale=scale,
).reshape(batch_size, seq_len, num_heads * head_size)
torch.testing.assert_close(output, ref_output)
25 changes: 20 additions & 5 deletions vllm/attention/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,18 +186,22 @@ def __init__(
self.scale = scale
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads

assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads

dtype = torch.get_default_dtype()
attn_backend = get_attn_backend(head_size,
dtype,
kv_cache_dtype=None,
block_size=16,
is_attention_free=False)
backend = backend_name_to_enum(attn_backend.get_name())
if backend in {_Backend.FLASH_ATTN, _Backend.FLASH_ATTN_VLLM_V1}:
backend = _Backend.XFORMERS

self.attn_backend = backend if backend in {
_Backend.TORCH_SDPA, _Backend.XFORMERS
_Backend.TORCH_SDPA,
_Backend.XFORMERS,
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
} else _Backend.TORCH_SDPA

def forward(
Expand All @@ -207,15 +211,26 @@ def forward(
value: torch.Tensor,
) -> torch.Tensor:
"""Input shape: batch_size x seq_len x hidden_size"""
# TODO(Isotr0py): Use existing backend implementations and support FA2
bsz, q_len, _ = query.size()
kv_len = key.size(1)

query = query.view(bsz, q_len, self.num_heads, self.head_size)
key = key.view(bsz, kv_len, self.num_kv_heads, self.head_size)
value = value.view(bsz, kv_len, self.num_kv_heads, self.head_size)

if self.attn_backend == _Backend.XFORMERS:
if (num_repeat := self.num_queries_per_kv) > 1:
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_repeat, dim=2)
value = torch.repeat_interleave(value, num_repeat, dim=2)

if self.attn_backend in {
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
}:
from vllm.vllm_flash_attn import flash_attn_func

out = flash_attn_func(query, key, value, softmax_scale=self.scale)
elif self.attn_backend == _Backend.XFORMERS:
from xformers import ops as xops

out = xops.memory_efficient_attention_forward(query,
Expand Down
Loading