Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Client for Workload Generator Workload File #501

Merged
merged 1 commit into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 29 additions & 3 deletions benchmarks/generator/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Generate workload file
# Using Workload Generator

## Generate a workload file based on workload patterns (synthetic patterns)
## Generate workload file
### Generate a workload file based on workload patterns (synthetic patterns)
If no trace file path is specified, the generator will generate workload file based on 4 synthetic pattern described [here](https://github.com/aibrix/aibrix/blob/main/benchmarks/autoscaling/bench_workload_generator.py):

```
Expand Down Expand Up @@ -47,4 +48,29 @@ export SHARE_GPT_PATH=${PATH_TO_SHARE_GPT_FILE}
python workload_generator.py --prompt-file $SHARE_GPT_PATH --num-prompts 100 --interval-ms 1000 --duration-ms 3600000 --trace-type azure --trace-file "$AZURE_TRACE_NAME" --group-interval-seconds 1 --model "Qwen/Qwen2.5-Coder-7B-Instruct" --output "output"
```

Note that the trace file contains both input and output lengths. And therefore dataset in ```$SHARE_GPT_PATH``` needs to be tokenized to be able to sampled based on their input/output token lengths. Therefore it is required to specify tokenizer to generate based on this trace. Use ```--group-interval-seconds``` to specify grouping interval from the origianl trace. The file would be stored under ```output``` folder and the plot illustrates the workload pattern will be under the ```plot``` directory.
Note that the trace file contains both input and output lengths. And therefore dataset in ```$SHARE_GPT_PATH``` needs to be tokenized to be able to sampled based on their input/output token lengths. Therefore it is required to specify tokenizer to generate based on this trace. Use ```--group-interval-seconds``` to specify grouping interval from the origianl trace. The file would be stored under ```output``` folder and the plot illustrates the workload pattern will be under the ```plot``` directory.


## Run Workload Generator

Starting vllm server:

```
python3 -m vllm.entrypoints.openai.api_server --host 0.0.0.0 \
--port "8000" --model /root/models/deepseek-coder-6.7b-instruct \
--trust-remote-code --max-model-len "14304" \
--api-key sk-kFJ12nKsFVfVmGpj3QzX65s4RbN2xJqWzPYCjYu7wT3BlbLi \
--enable-chunked-prefill
```

Using a sample workload in a client:
```
python3 client.py --workload-path "output/Quick Rising.jsonl" \
--endpoint "http://localhost:8000" \
--model /root/models/deepseek-coder-6.7b-instruct \
--api-key sk-kFJ12nKsFVfVmGpj3QzX65s4RbN2xJqWzPYCjYu7wT3BlbLi \
--output-file-path output.jsonl

```

The output will be stored as a ```.jsonl``` file in ```output.jsonl```
94 changes: 94 additions & 0 deletions benchmarks/generator/client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import argparse
import logging
import time
import asyncio
import openai
import json

from utils import (load_workload, wrap_prompt_as_chat_message)

# Asynchronous request handler
async def send_request(client, model, endpoint, prompt, output_file):
start_time = asyncio.get_event_loop().time()
try:
response = await client.chat.completions.create(
model = model,
messages = prompt,
temperature = 0,
max_tokens = 128
)

latency = asyncio.get_event_loop().time() - start_time
prompt_tokens = response.usage.prompt_tokens
output_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens
throughput = output_tokens / latency
output_text = response.choices[0].message.content

result = {
"output": output_text,
"prompt_tokens": prompt_tokens,
"output_tokens": output_tokens,
"total_tokens": total_tokens,
"latency": latency,
"throughput": throughput
}

# Write result to JSONL file
output_file.write(json.dumps(result) + "\n")
output_file.flush() # Ensure data is written immediately to the file

logging.warning(
f"Request completed in {latency:.2f} seconds with throughput {throughput:.2f} tokens/s, response {response}")
return result
except Exception as e:
logging.error(f"Error sending request to at {endpoint}: {str(e)}")
return None

async def benchmark(endpoint, model, api_key, workload_path, output_file_path):
client = openai.AsyncOpenAI(
api_key=api_key,
base_url=endpoint+"/v1",
)
with open(output_file_path, 'a', encoding='utf-8') as output_file:
load_struct = load_workload(workload_path)
batch_tasks = []
base_time = time.time()
num_requests = 0
for requests_dict in load_struct:
ts = int(requests_dict["Timestamp"])
requests = requests_dict["Requests"]
cur_time = time.time()
target_time = base_time + ts/1000.0
logging.warning(f"Prepare to launch {len(requests)} tasks after {target_time - cur_time}")
if target_time > cur_time:
await asyncio.sleep(target_time - cur_time)
formatted_prompts = [wrap_prompt_as_chat_message(request["Prompt"]) for request in requests]
for formatted_prompt in formatted_prompts:
task = asyncio.create_task(
send_request(client, model, endpoint, formatted_prompt, output_file)
)
batch_tasks.append(task)
num_requests += len(requests)
await asyncio.gather(*batch_tasks)
logging.warning(f"All {num_requests} requests completed for deployment.")


def main(args):
logging.info(f"Starting benchmark on endpoint {args.endpoint}")
start_time = time.time()
asyncio.run(benchmark(args.endpoint, args.model, args.api_key, args.workload_path, args.output_file_path))
end_time = time.time()
logging.info(f"Benchmark completed in {end_time - start_time:.2f} seconds")


if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Workload Generator')
parser.add_argument("--workload-path", type=str, default=None, help="File path to the workload file.")
parser.add_argument('--endpoint', type=str, required=True)
parser.add_argument("--model", type=str, required=True, help="Name of the model.")
parser.add_argument("--api-key", type=str, required=True, help="API key to the service. ")
parser.add_argument('--output-file-path', type=str, default="output.jsonl")

args = parser.parse_args()
main(args)
12 changes: 9 additions & 3 deletions benchmarks/generator/sample_request.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,9 +52,13 @@ def sample_sharegpt_requests(
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
continue
filtered_dataset.append((prompt, prompt_len, output_len, None))
filtered_dataset.append({"Prompt": prompt,
"Prompt Length": prompt_len,
"Output Length": output_len})
else:
filtered_dataset.append((prompt, -1, -1, None))
filtered_dataset.append({"Prompt": prompt,
"Prompt Length": -1,
"Output Length": -1})

return filtered_dataset

Expand Down Expand Up @@ -89,7 +93,9 @@ def sample_sharegpt_requests_len_range(
if not filtered.empty:
# Select the first match or random sample
sample = filtered.iloc[0] # Or filtered.sample(1) for random
filtered_results.append((sample["prompt"], sample["prompt_len"], sample["completion_len"], None))
filtered_results.append({"Prompt": sample["prompt"],
"Prompt Length": sample["prompt_len"],
"Output Length": sample["completion_len"]})
break # Stop relaxing for this request once a match is found

# Reduce err_perc for next iteration
Expand Down
23 changes: 16 additions & 7 deletions benchmarks/generator/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,20 +63,29 @@ def save_workload(load_struct: List[Any],
for row in load_struct:
json_line = json.dumps(row) # Convert list to JSON string
file.write(json_line + "\n")
logging.warn(f'Saved workload file to {output_path + ".jsonl"}')
logging.warn(f'Saved workload file to {output_path + ".jsonl"}')
else:
with open(output_path + ".json", 'w') as file:
json.dump(load_struct, file, indent=4)
logging.warn(f'Saved workload file to {output_path + ".json"}')
logging.warn(f'Saved workload file to {output_path + ".json"}')

def load_workload(load_struct: List[Any],
input_path: str,
use_jsonl: Optional[bool] = False) -> List[Any]:
def load_workload(input_path: str) -> List[Any]:
load_struct = None
if use_jsonl:
if input_path.endswith(".jsonl"):
with open(input_path, "r") as file:
load_struct = [json.loads(line) for line in file]
else:
with open(input_path, "r") as file:
load_struct = json.load(file)
return load_struct
return load_struct

# Function to wrap the prompt into OpenAI's chat completion message format.
def wrap_prompt_as_chat_message(prompt: str):
"""
Wrap the prompt into OpenAI's chat completion message format.

:param prompt: The user prompt to be converted.
:return: A list containing chat completion messages.
"""
user_message = {"role": "user", "content": prompt}
return [user_message]
4 changes: 2 additions & 2 deletions benchmarks/generator/workload_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def pair_requests_with_prompts_round_robin(workload: List[List[Any]],
requests_with_prompts = [
prompts[request % prompt_count] for request in requests
]
paired_workload.append((ts, requests_with_prompts))
paired_workload.append({"Timestamp": ts, "Requests": requests_with_prompts})

# Save to file
save_workload(paired_workload, output_file, use_jsonl = to_jsonl)
Expand Down Expand Up @@ -185,7 +185,7 @@ def generate_from_azure_csv(file_path: str,
)

if sampled_requests: # Only add non-empty groups
grouped_requests.append((ts, sampled_requests))
grouped_requests.append({"Timestamp": ts, "Requests": sampled_requests})
ts += interval_ms
if ts > duration_ms:
break
Expand Down