-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Max Score 500 with Data Extraction from Image , Need Better Frame Rat…
…es for Better Performance
- Loading branch information
1 parent
e50db77
commit d279269
Showing
5 changed files
with
266 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# Don't track content of these folders | ||
screens/ | ||
Logistic_Regression_with_image/1/ | ||
Extract_info_Image/1/ | ||
CNN_with_image/1/ | ||
Logistic_Regression_Data/1/ | ||
temp/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import csv | ||
from PIL import Image | ||
import numpy as np | ||
import PIL.ImageOps | ||
import cv2 | ||
from selenium import webdriver | ||
from selenium.webdriver.common.keys import Keys | ||
|
||
def mouse_callback(event, x, y, flags, params): | ||
global i | ||
print y , x , i[y,x] | ||
|
||
|
||
|
||
files = [] | ||
action = [] | ||
|
||
cactusBase = 158 | ||
MIN_LENGTH = 80 | ||
|
||
with open("1/out.csv" , "r") as f : | ||
data = csv.reader(f, delimiter=',') | ||
for i in data: | ||
if(i[0] == 1): | ||
action.append(0) | ||
else: | ||
action.append(1) | ||
files.append(i[1]) | ||
|
||
|
||
def parse_function(filename,basewidth = 0): | ||
img = img = cv2.imread(filename,cv2.IMREAD_GRAYSCALE) | ||
#img = PIL.ImageOps.invert(img) | ||
#wpercent = (basewidth/float(img.size[0])) | ||
#hsize = int((float(img.size[1])*float(wpercent))) | ||
#img = img.resize((basewidth,hsize), Image.ANTIALIAS) | ||
return img | ||
|
||
def length_to_cactus(imgline): | ||
startpos = 1000 | ||
i = 0 | ||
black = False | ||
inter = True | ||
while i < len(imgline): | ||
if(imgline[i] == 0 and black == True): | ||
if(i - startpos < MIN_LENGTH):black = False | ||
else:return str(startpos) + " " +str( i - startpos) | ||
if(imgline[i] == 0 and black == False): | ||
if(inter): | ||
startpos = i | ||
inter = False | ||
black=True | ||
i+=1 | ||
return str(startpos) +" " + "1000" | ||
|
||
x_v = [np.array(parse_function(i)) for i in files ] | ||
y_v = action | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
|
||
for i in x_v: | ||
cv2.namedWindow('image', cv2.WINDOW_NORMAL) | ||
cv2.resizeWindow('image', 1920, 500) | ||
cv2.putText(i, str(length_to_cactus(i[cactusBase] )) , (5, 15), cv2.FONT_HERSHEY_PLAIN , 0.9, (155, 155, 155)) | ||
cv2.imshow("image", i) | ||
cv2.setMouseCallback('image', mouse_callback) | ||
cv2.waitKey(0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
|
||
import numpy as np | ||
|
||
from PIL import Image | ||
import keyboard | ||
import cv2 | ||
|
||
def mouse_callback(event, x, y, flags, params): | ||
global thresh_img | ||
print x , y , thresh_img[y,x] | ||
|
||
|
||
img = cv2.imread('1/train-122.png',0) | ||
|
||
|
||
|
||
ret,thresh_img = cv2.threshold(img,127,255,cv2.THRESH_BINARY) | ||
|
||
#cv2.imwrite('bw_image.png', thresh_img) | ||
|
||
cv2.namedWindow('image', cv2.WINDOW_NORMAL) | ||
cv2.resizeWindow('image', 1920, 500) | ||
|
||
|
||
cv2.setMouseCallback('image', mouse_callback) | ||
|
||
|
||
|
||
|
||
|
||
cv2.imshow("image" , thresh_img) | ||
|
||
|
||
cv2.waitKey(0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import csv | ||
from PIL import Image | ||
import numpy as np | ||
import PIL.ImageOps | ||
import cv2 | ||
from selenium import webdriver | ||
from selenium.webdriver.common.keys import Keys | ||
|
||
import tensorflow as tf | ||
|
||
|
||
def mouse_callback(event, x, y, flags, params): | ||
global i | ||
print y , x , i[y,x] | ||
|
||
|
||
|
||
files = [] | ||
action = [] | ||
|
||
cactusBase = 156 | ||
MIN_LENGTH = 100 | ||
|
||
with open("1/out.csv" , "r") as f : | ||
data = csv.reader(f, delimiter=',') | ||
for i in data: | ||
if(i[0] == 1): | ||
action.append(0) | ||
else: | ||
action.append(1) | ||
files.append(i[1]) | ||
|
||
|
||
def parse_function(filename,basewidth = 0): | ||
img = img = cv2.imread(filename,cv2.IMREAD_GRAYSCALE) | ||
#img = PIL.ImageOps.invert(img) | ||
#wpercent = (basewidth/float(img.size[0])) | ||
#hsize = int((float(img.size[1])*float(wpercent))) | ||
#img = img.resize((basewidth,hsize), Image.ANTIALIAS) | ||
return img | ||
|
||
def length_to_cactus(imgline): | ||
startpos = 1000 | ||
i = 0 | ||
black = False | ||
inter = True | ||
while i < len(imgline): | ||
if(imgline[i] == 0 and black == True): | ||
if(i - startpos < MIN_LENGTH):black = False | ||
else:return startpos ,( i - startpos) | ||
if(imgline[i] == 0 and black == False): | ||
if(inter): | ||
startpos = i | ||
inter = False | ||
black=True | ||
i+=1 | ||
return startpos , 1000 | ||
|
||
x_v = [ length_to_cactus(np.array(parse_function(i))[cactusBase]) for i in files ] | ||
y_v = action | ||
|
||
print "Loaded all Images" | ||
|
||
print "Starting Training NN ( Tensorflow ) " | ||
|
||
''' | ||
Using a Neural Network with No Hidden Layers with 55*200 input layers. total of 55 * 200 Values. | ||
The weight dimentions are (55 * 200) * 1 , input is 1 * ( 55 * 200 ) | ||
Output is single neuron ( 1 - Neuron Fired -- Jump ) else ( Leave ) | ||
''' | ||
|
||
|
||
# Parameters | ||
#learning_rate = .00000000001 | ||
learning_rate = .00000000001 | ||
training_epochs = 50000 | ||
batch_size = x_v.__len__() | ||
display_step = 110 | ||
|
||
tf.set_random_seed(777) | ||
x = tf.placeholder(tf.float32, [None, 2]) | ||
y = tf.placeholder(tf.float32, [None]) | ||
|
||
W = tf.Variable(tf.zeros([2, 1])) | ||
b = tf.Variable(tf.random_normal([1])) | ||
|
||
pred = tf.nn.tanh(tf.add(tf.matmul(x, W) , b) ) | ||
|
||
|
||
#cost = tf.reduce_mean(-1 * (tf.reduce_sum(y*tf.log(pred) + tf.reduce_sum( (y-1)*tf.log(pred -1) ) ))) | ||
cost = tf.reduce_mean(-1 * (tf.reduce_sum(y*tf.log(pred )) ) ) | ||
|
||
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | ||
|
||
|
||
correct_prediction = tf.equal(tf.cast(tf.argmax(pred, 1),"float64"),tf.cast(y , "float64") ) | ||
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32")) | ||
|
||
init = tf.global_variables_initializer() | ||
|
||
with tf.Session() as sess: | ||
sess.run(init) | ||
|
||
for epoch in range(training_epochs): | ||
epoch_loss = 0 | ||
for i in range(int(len(files)//batch_size)): | ||
epoch_x, epoch_y = x_v[ (i * batch_size) : (i +1 ) * batch_size ] , y_v[ (i * batch_size) : (i +1 ) * batch_size ] | ||
#print sess.run(max_pool1, feed_dict={x_inp: epoch_x, y: epoch_y}).shape | ||
_, c , w = sess.run([optimizer, cost, W], feed_dict={x: x_v,y: y_v}) | ||
#print sum(w) , c | ||
epoch_loss += c | ||
|
||
#print sum(w) | ||
if (epoch+1) % display_step == 0: | ||
print("Epoch:", '%04d' % (epoch+1), "cost=", "{}".format(epoch_loss)) | ||
|
||
print(sess.run([accuracy , pred] ,feed_dict={x: x_v,y: y_v })) | ||
|
||
|
||
# Start Selenium Program | ||
|
||
import math | ||
|
||
driver = webdriver.Chrome() | ||
|
||
driver.get("chrome://dino") | ||
elem = driver.find_element_by_id("t") | ||
|
||
variable = 1 | ||
while True: | ||
if( elem.get_attribute("class") == "offline" ):continue | ||
if(driver.execute_script("return Runner.instance_.playing;") == False ): | ||
elem.send_keys(Keys.SPACE) | ||
continue | ||
|
||
driver.save_screenshot("temp/screenshot-{}.png".format(variable)) | ||
img = cv2.imread("temp/screenshot-{}.png".format( variable)) | ||
|
||
img = img[ 168 : 400 , 105: ] | ||
|
||
ret,thresh_img = cv2.threshold(img,127,255,cv2.THRESH_BINARY) | ||
cv2.imwrite("temp/train-1.png", thresh_img) | ||
|
||
value =length_to_cactus(np.array(parse_function("temp/train-1.png"))[cactusBase] ) | ||
|
||
value = sess.run(pred , feed_dict={x : [value]}) | ||
|
||
print value | ||
|
||
if(int(value) != 1) : | ||
elem.send_keys(Keys.SPACE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
col1,col2 | ||
1,5 | ||
2,6 | ||
3,7 | ||
4,8 |