Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

format some files #8

Merged
merged 1 commit into from
Nov 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -15,27 +15,28 @@ import org.apache.spark.sql.types.{DoubleType, LongType, StructField, StructType
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object ClosenessAlgo {
private val LOGGER = Logger.getLogger(this.getClass)
private val LOGGER = Logger.getLogger(this.getClass)
val ALGORITHM: String = "Closeness"
type SPMap = Map[VertexId, Double]

private def makeMap(x: (VertexId, Double)*) = Map(x: _*)

private def addMap(spmap: SPMap, weight: Double): SPMap = spmap.map { case (v, d) => v -> (d + weight) }
private def addMap(spmap: SPMap, weight: Double): SPMap = spmap.map {
case (v, d) => v -> (d + weight)
}

private def addMaps(spmap1: SPMap, spmap2: SPMap): SPMap = {
(spmap1.keySet ++ spmap2.keySet).map {
k => k -> math.min(spmap1.getOrElse(k, Double.MaxValue), spmap2.getOrElse(k, Double.MaxValue))
(spmap1.keySet ++ spmap2.keySet).map { k =>
k -> math.min(spmap1.getOrElse(k, Double.MaxValue), spmap2.getOrElse(k, Double.MaxValue))
}(collection.breakOut)
}

/**
* run the Closeness algorithm for nebula graph
*/
def apply(spark: SparkSession,
dataset: Dataset[Row],
hasWeight:Boolean):DataFrame={
* run the Closeness algorithm for nebula graph
*/
def apply(spark: SparkSession, dataset: Dataset[Row], hasWeight: Boolean): DataFrame = {
val graph: Graph[None.type, Double] = NebulaUtil.loadInitGraph(dataset, hasWeight)
val closenessRDD = execute(graph)
val closenessRDD = execute(graph)
val schema = StructType(
List(
StructField(AlgoConstants.ALGO_ID_COL, LongType, nullable = false),
Expand All @@ -46,12 +47,11 @@ object ClosenessAlgo {
}

/**
* execute Closeness algorithm
*/
def execute(graph: Graph[None.type, Double]):RDD[Row]={
* execute Closeness algorithm
*/
def execute(graph: Graph[None.type, Double]): RDD[Row] = {
val spGraph = graph.mapVertices((vid, _) => makeMap(vid -> 0.0))


val initialMessage = makeMap()

def vertexProgram(id: VertexId, attr: SPMap, msg: SPMap): SPMap = {
Expand All @@ -63,15 +63,15 @@ object ClosenessAlgo {
if (edge.srcAttr != addMaps(newAttr, edge.srcAttr)) Iterator((edge.srcId, newAttr))
else Iterator.empty
}
val spsGraph=Pregel(spGraph, initialMessage)(vertexProgram, sendMessage, addMaps)
val spsGraph = Pregel(spGraph, initialMessage)(vertexProgram, sendMessage, addMaps)
val closenessRDD = spsGraph.vertices.map(vertex => {
var dstNum = 0
var dstNum = 0
var dstDistanceSum = 0.0
for (distance <- vertex._2.values) {
dstNum += 1
dstDistanceSum += distance
}
Row(vertex._1,(dstNum - 1) / dstDistanceSum)
Row(vertex._1, (dstNum - 1) / dstDistanceSum)
})
closenessRDD
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,19 +14,26 @@ import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{LongType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

/**
* The implementation of the algorithm refers to paper `Towards real-time community detection in large networks`.
*/
object HanpAlgo {
val ALGORITHM: String = "Hanp"

/**
* run the Hanp algorithm for nebula graph
*/
* run the Hanp algorithm for nebula graph
*/
def apply(spark: SparkSession,
dataset: Dataset[Row],
hanpConfig: HanpConfig,
hasWeight:Boolean,
preferences:RDD[(VertexId,Double)]=null):DataFrame={
hasWeight: Boolean,
preferences: RDD[(VertexId, Double)] = null): DataFrame = {
val graph: Graph[None.type, Double] = NebulaUtil.loadInitGraph(dataset, hasWeight)
val hanpResultRDD = execute(graph,hanpConfig.hopAttenuation,hanpConfig.maxIter,hanpConfig.preference,preferences)
val hanpResultRDD = execute(graph,
hanpConfig.hopAttenuation,
hanpConfig.maxIter,
hanpConfig.preference,
preferences)
val schema = StructType(
List(
StructField(AlgoConstants.ALGO_ID_COL, LongType, nullable = false),
Expand All @@ -37,51 +44,59 @@ object HanpAlgo {
}

/**
* execute Hanp algorithm
*/
* execute Hanp algorithm
*/
def execute(graph: Graph[None.type, Double],
hopAttenuation:Double,
hopAttenuation: Double,
maxIter: Int,
preference:Double=1.0,
preferences:RDD[(VertexId,Double)]=null):RDD[Row]={
var hanpGraph: Graph[(VertexId, Double, Double), Double]=null
if(preferences==null){
hanpGraph=graph.mapVertices((vertexId,_)=>(vertexId,preference,1.0))
}else{
hanpGraph=graph.outerJoinVertices(preferences)((vertexId, _, vertexPreference) => {(vertexId,vertexPreference.getOrElse(preference),1.0)})
preference: Double = 1.0,
preferences: RDD[(VertexId, Double)] = null): RDD[Row] = {
var hanpGraph: Graph[(VertexId, Double, Double), Double] = null
if (preferences == null) {
hanpGraph = graph.mapVertices((vertexId, _) => (vertexId, preference, 1.0))
} else {
hanpGraph = graph.outerJoinVertices(preferences)((vertexId, _, vertexPreference) => {
(vertexId, vertexPreference.getOrElse(preference), 1.0)
})
}
def sendMessage(e: EdgeTriplet[(VertexId,Double,Double), Double]): Iterator[(VertexId, Map[VertexId, (Double,Double)])] = {
if(e.srcAttr._3>0 && e.dstAttr._3>0){
def sendMessage(e: EdgeTriplet[(VertexId, Double, Double), Double])
: Iterator[(VertexId, Map[VertexId, (Double, Double)])] = {
if (e.srcAttr._3 > 0 && e.dstAttr._3 > 0) {
Iterator(
(e.dstId, Map(e.srcAttr._1 -> (e.srcAttr._3,e.srcAttr._2*e.srcAttr._3*e.attr))),
(e.srcId, Map(e.dstAttr._1 -> (e.dstAttr._3,e.dstAttr._2*e.dstAttr._3*e.attr)))
(e.dstId, Map(e.srcAttr._1 -> (e.srcAttr._3, e.srcAttr._2 * e.srcAttr._3 * e.attr))),
(e.srcId, Map(e.dstAttr._1 -> (e.dstAttr._3, e.dstAttr._2 * e.dstAttr._3 * e.attr)))
)
}else if(e.srcAttr._3>0){
Iterator((e.dstId, Map(e.srcAttr._1 -> (e.srcAttr._3,e.srcAttr._2*e.srcAttr._3*e.attr))))
}else if(e.dstAttr._3>0){
Iterator((e.srcId, Map(e.dstAttr._1 -> (e.dstAttr._3,e.dstAttr._2*e.dstAttr._3*e.attr))))
}else{
} else if (e.srcAttr._3 > 0) {
Iterator(
(e.dstId, Map(e.srcAttr._1 -> (e.srcAttr._3, e.srcAttr._2 * e.srcAttr._3 * e.attr))))
} else if (e.dstAttr._3 > 0) {
Iterator(
(e.srcId, Map(e.dstAttr._1 -> (e.dstAttr._3, e.dstAttr._2 * e.dstAttr._3 * e.attr))))
} else {
Iterator.empty
}
}
def mergeMessage(count1: Map[VertexId, (Double,Double)], count2: Map[VertexId, (Double,Double)])
: Map[VertexId, (Double,Double)] = {
def mergeMessage(count1: Map[VertexId, (Double, Double)],
count2: Map[VertexId, (Double, Double)]): Map[VertexId, (Double, Double)] = {
(count1.keySet ++ count2.keySet).map { i =>
val count1Val = count1.getOrElse(i, (0.0,0.0))
val count2Val = count2.getOrElse(i, (0.0,0.0))
i -> (Math.max(count1Val._1,count2Val._1),count1Val._2+count2Val._2)
val count1Val = count1.getOrElse(i, (0.0, 0.0))
val count2Val = count2.getOrElse(i, (0.0, 0.0))
i -> (Math.max(count1Val._1, count2Val._1), count1Val._2 + count2Val._2)
}(collection.breakOut)
}
def vertexProgram(vid: VertexId, attr: (VertexId,Double,Double), message: Map[VertexId, (Double,Double)]): (VertexId,Double,Double) = {
def vertexProgram(vid: VertexId,
attr: (VertexId, Double, Double),
message: Map[VertexId, (Double, Double)]): (VertexId, Double, Double) = {
if (message.isEmpty) {
attr
} else {
val maxMessage=message.maxBy(_._2._2)
(maxMessage._1,attr._2,maxMessage._2._1-hopAttenuation)
val maxMessage = message.maxBy(_._2._2)
(maxMessage._1, attr._2, maxMessage._2._1 - hopAttenuation)
}
}
val initialMessage = Map[VertexId, (Double,Double)]()
val hanpResultGraph=hanpGraph.pregel(initialMessage,maxIter)(vertexProgram,sendMessage,mergeMessage)
hanpResultGraph.vertices.map(vertex=>Row(vertex._1,vertex._2._1))
val initialMessage = Map[VertexId, (Double, Double)]()
val hanpResultGraph =
hanpGraph.pregel(initialMessage, maxIter)(vertexProgram, sendMessage, mergeMessage)
hanpResultGraph.vertices.map(vertex => Row(vertex._1, vertex._2._1))
}
}
Loading