This repository contains the source code accompanying our ACM CODASPY'22 paper EG-Booster: Explanation-Guided Booster of ML Evasion Attacks.
- Linux
- 6 vCPUs, 18.5 GB memory
- GPU: 1 x NVIDIA Tesla K80
$ git clone https://github.com/EG-Booster/code.git
It is highly recommended to create a new separate python3 environment:
$ python3 -m venv ./EG-CIFAR10-env
$ source EG-CIFAR10-env/bin/activate
$ cd code/CIFAR10
$ pip install -r requirements.txt
Note: to avoid any runtime and memory-related errors please adjust batch_size
and num_workers
in the configuration area of CIFAR10.py
, according to your Hardware envirnment. Default values are batch_size = 64
and num_workers = 2
Finally, run the following:
$ python CIFAR10.py
Abderrahmen Amich: aamich@umich.edu