generated from ulises1229/INTRO-R-ENESJ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdia2.R
178 lines (128 loc) · 3.76 KB
/
dia2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
## Alberto Prado
## 18 enero 2022
## Curso Intersemestral día 2
rm(list=ls()) # Borrar memoría
setwd("~/Desktop/Curso R/2021-1") # Lugar de trabajo
mtcars <- read.csv("mtcars.csv") # si no funciona tratar read.csv2
str(mtcars)
rownames(mtcars) <- mtcars$X
rownames(mtcars)
mtcars <- mtcars[,-1] # Eliminar columna X
names(mtcars) <- c("mpg","Num.Cil", "Desp", "CF","Eje",
"Peso","Seg.4.mi","forma","Transmisión",
"Vel","Carb")
names(mtcars)
mtcars <- mtcars[,c(1,4,2,3,5,6,7,8,9,10,11)]
# Histograma
hist(mtcars$mpg)
# Gráfico XY
plot(x=mtcars$Peso, y=mtcars$CF)
plot(mtcars$CF~mtcars$Peso) # Usando virgulilla
plot(x=mtcars$Peso, y=mtcars$CF, col= mtcars$Transmisión+1)
str(mtcars)
plot(CF~Peso, data=mtcars)
## Boxplot o Caja y bigote
boxplot(mtcars$Peso~mtcars$Transmisión)
# cambiar etiquetas de los niveles de un factor
mtcars$Transmisión <- factor(mtcars$Transmisión,
labels=c("automático","manual"))
boxplot(mtcars$Peso~mtcars$Transmisión, col=c(4,2))
levels(mtcars$Transmisión)
mtcars$Transmisión <- factor(mtcars$Transmisión,
levels=c("manual","automático"))
### Ejercicio 2
# Cajas y bigote CF en funcion de forma del motor
boxplot(CF~forma,data=mtcars)
boxplot(mtcars$CF~mtcars$forma)
# prueba de T student
t.test(CF~forma,data=mtcars)
# varianza
var(mtcars[mtcars$forma=="0","CF"])
var(mtcars[mtcars$forma=="1","CF"])
# Pueba de homogeniedad de varianzas
bartlett.test(CF~forma,data=mtcars)
# Prueba de normalidad
shapiro.test(mtcars[mtcars$forma=="0","CF"])
shapiro.test(mtcars[mtcars$forma=="1","CF"])
# Prueba no parametrica
wilcox.test(CF~forma,data=mtcars)
# Ho: No hay differencia (p >=0.05)
# Ha: Sí hay differencia (p < 0.05)
#####################################
#####################################
### Distribuciones
# Cleaveland plot por grupo
dotchart(mtcars$CF,groups=mtcars$Transmisión)
# Datos cars.csv
cars <- read.csv2("cars.csv")
# Cleavlandplot
dotchart(cars$speed)
dotchart(cars$dist)
# Histogramas
hist(cars$speed)
hist(cars$dist)
# Dibujar curva de distribución (densidad)
plot(density(cars$speed))
plot(density(cars$dist))
### Instalar la librería
# install.packages("MASS")
## Cargar librería
library(MASS)
help(package = "MASS")
# Obtener parametros de curva PDF (funcion de densidad de probabilidad)
# Velocidad
fitdistr(cars$speed,"normal")
# Distancia
fitdistr(cars$dist,"lognormal")
### Usar Visualize para visualizar distribución
library(visualize)
# Velocidad
visualize.norm(mu=15.4,sd=5.2345, stat=25, section = "upper")
visualize.norm(mu=15.4,sd=5.2345, stat=c(10,25), section = "bounded")
# Distancia
visualize.lnorm(meanlog = 3.53591, sdlog=0.78668,
stat=10, section="lower")
### Ejercicio 8
lluvia <- read.csv("lluvia.csv")
hist(lluvia$mm.lluvia)
fitdistr(lluvia$mm.lluvia,"exponential")
visualize.exp(theta=0.90074,stat=2,section="upper")
####### Correlaciones
# Covarianza
cov(cars$speed,cars$dist)
# Correlación
cor(cars$speed,cars$dist)
# Cargar advertising
adv <- read.csv("advertising.csv")
str(adv)
cor(adv)
##################################
#### Modelo lineal
lm1 <- lm(cars$dist~cars$speed)
lm1
summary(lm1)
plot(cars$dist~cars$speed)
abline(a=-17.5791,b=3.9324,lty=3, lwd=4, col="blue")
text(x=6,y=100,"r2 = 0.64")
text(x=10, y= 80, "y= -17.58 + 3.93x")
############
str(adv)
# modelo con dos variables indenpendientes
mm <- lm(Sales~TV+Radio, data=adv)
mm
summary(mm)
############
# Ejercicio 10
M1 <- lm(Sales~TV, data=adv)
summary(M1)
# r2=0.81
M2<- lm(Sales~Radio, data=adv)
summary(M2)
# r2=0.12
M3<- lm(Sales~Newspaper, data=adv)
summary(M3)
# r2=0.02
### Graficar modelo TV
plot(Sales~TV, data=adv, pch=25, col="coral")
abline(a=6.975,b=0.0555,col="blue",lwd=3, lty=3)
text(x=30,y=25, "r2=0.81")