-
Notifications
You must be signed in to change notification settings - Fork 54.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
For better readability updated xz.txt file #524
base: master
Are you sure you want to change the base?
Conversation
Updated xz.txt file to remove two conservative colons. Example:: changed to Example:
Hi @mshingote! Thanks for your contribution to the Linux kernel! Linux kernel development happens on mailing lists, rather than on GitHub - this GitHub repository is a read-only mirror that isn't used for accepting contributions. So that your change can become part of Linux, please email it to us as a patch. Sending patches isn't quite as simple as sending a pull request, but fortunately it is a well documented process. Here's what to do:
How do I format my contribution?The Linux kernel community is notoriously picky about how contributions are formatted and sent. Fortunately, they have documented their expectations. Firstly, all contributions need to be formatted as patches. A patch is a plain text document showing the change you want to make to the code, and documenting why it is a good idea. You can create patches with Secondly, patches need 'commit messages', which is the human-friendly documentation explaining what the change is and why it's necessary. Thirdly, changes have some technical requirements. There is a Linux kernel coding style, and there are licensing requirements you need to comply with. Both of these are documented in the Submitting Patches documentation that is part of the kernel. Note that you will almost certainly have to modify your existing git commits to satisfy these requirements. Don't worry: there are many guides on the internet for doing this. Who do I send my contribution to?The Linux kernel is composed of a number of subsystems. These subsystems are maintained by different people, and have different mailing lists where they discuss proposed changes. If you don't already know what subsystem your change belongs to, the
Make sure that your list of recipients includes a mailing list. If you can't find a more specific mailing list, then LKML - the Linux Kernel Mailing List - is the place to send your patches. It's not usually necessary to subscribe to the mailing list before you send the patches, but if you're interested in kernel development, subscribing to a subsystem mailing list is a good idea. (At this point, you probably don't need to subscribe to LKML - it is a very high traffic list with about a thousand messages per day, which is often not useful for beginners.) How do I send my contribution?Use For more information about using How do I get help if I'm stuck?Firstly, don't get discouraged! There are an enormous number of resources on the internet, and many kernel developers who would like to see you succeed. Many issues - especially about how to use certain tools - can be resolved by using your favourite internet search engine. If you can't find an answer, there are a few places you can turn:
If you get really, really stuck, you could try the owners of this bot, @daxtens and @ajdlinux. Please be aware that we do have full-time jobs, so we are almost certainly the slowest way to get answers! I sent my patch - now what?You wait. You can check that your email has been received by checking the mailing list archives for the mailing list you sent your patch to. Messages may not be received instantly, so be patient. Kernel developers are generally very busy people, so it may take a few weeks before your patch is looked at. Then, you keep waiting. Three things may happen:
Further information
Happy hacking! This message was posted by a bot - if you have any questions or suggestions, please talk to my owners, @ajdlinux and @daxtens, or raise an issue at https://github.com/ajdlinux/KernelPRBot. |
commit f4483f2 upstream. When a tail call fails, it is documented that the tail call should continue execution at the following instruction. An example tail call sequence is: 12: (85) call bpf_tail_call#12 13: (b7) r0 = 0 14: (95) exit The ARM assembler for the tail call in this case ends up branching to instruction 14 instead of instruction 13, resulting in the BPF filter returning a non-zero value: 178: ldr r8, [sp, torvalds#588] ; insn 12 17c: ldr r6, [r8, r6] 180: ldr r8, [sp, torvalds#580] 184: cmp r8, r6 188: bcs 0x1e8 18c: ldr r6, [sp, torvalds#524] 190: ldr r7, [sp, torvalds#528] 194: cmp r7, #0 198: cmpeq r6, torvalds#32 19c: bhi 0x1e8 1a0: adds r6, r6, #1 1a4: adc r7, r7, #0 1a8: str r6, [sp, torvalds#524] 1ac: str r7, [sp, torvalds#528] 1b0: mov r6, torvalds#104 1b4: ldr r8, [sp, torvalds#588] 1b8: add r6, r8, r6 1bc: ldr r8, [sp, torvalds#580] 1c0: lsl r7, r8, #2 1c4: ldr r6, [r6, r7] 1c8: cmp r6, #0 1cc: beq 0x1e8 1d0: mov r8, torvalds#32 1d4: ldr r6, [r6, r8] 1d8: add r6, r6, torvalds#44 1dc: bx r6 1e0: mov r0, #0 ; insn 13 1e4: mov r1, #0 1e8: add sp, sp, torvalds#596 ; insn 14 1ec: pop {r4, r5, r6, r7, r8, sl, pc} For other sequences, the tail call could end up branching midway through the following BPF instructions, or maybe off the end of the function, leading to unknown behaviours. Fixes: 39c13c2 ("arm: eBPF JIT compiler") Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's not an important change. It's more a style error.
Kconfig: document `CONFIG_WERROR` applies to Rust too
When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com>
When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df5cd36 ] When we boot a machine using a devicetree, the generic DT code goes through all nodes with a 'device_type = "memory"' property, and collects all memory banks mentioned there. However it does not check for the status property, so any nodes which are explicitly "disabled" will still be added as a memblock. This ends up badly for QEMU, when booting with secure firmware on arm/arm64 machines, because QEMU adds a node describing secure-only memory: =================== secram@e000000 { secure-status = "okay"; status = "disabled"; reg = <0x00 0xe000000 0x00 0x1000000>; device_type = "memory"; }; =================== The kernel will eventually use that memory block (which is located below the main DRAM bank), but accesses to that will be answered with an SError: =================== [ 0.000000] Internal error: synchronous external abort: 96000050 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0-rc6-00014-g10c8acb8b679 torvalds#524 [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : new_slab+0x190/0x340 [ 0.000000] lr : new_slab+0x184/0x340 [ 0.000000] sp : ffff80000a4b3d10 .... ================== The actual crash location and call stack will be somewhat random, and depend on the specific allocation of that physical memory range. As the DT spec[1] explicitly mentions standard properties, add a simple check to skip over disabled memory nodes, so that we only use memory that is meant for non-secure code to use. That fixes booting a QEMU arm64 VM with EL3 enabled ("secure=on"), when not using UEFI. In this case the QEMU generated DT will be handed on to the kernel, which will see the secram node. This issue is reproducible when using TF-A together with U-Boot as firmware, then booting with the "booti" command. When using U-Boot as an UEFI provider, the code there [2] explicitly filters for disabled nodes when generating the UEFI memory map, so we are safe. EDK/2 only reads the first bank of the first DT memory node [3] to learn about memory, so we got lucky there. [1] https://github.com/devicetree-org/devicetree-specification/blob/main/source/chapter3-devicenodes.rst#memory-node (after the table) [2] https://source.denx.de/u-boot/u-boot/-/blob/master/lib/fdtdec.c#L1061-1063 [3] https://github.com/tianocore/edk2/blob/master/ArmVirtPkg/PrePi/FdtParser.c Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20220517101410.3493781-1-andre.przywara@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
After commit 27a2195 ("power: supply: core: auto-exposure of simple-battery data") we call power_supply_get_battery_info() in __power_supply_register(), but it causes test_battery crash with NULL pointer: [ 7.524846] __power_supply_register: Expected proper parent device for 'test_battery' [ 7.524856] CPU 3 Unable to handle kernel paging request at virtual address 0000000000000278, era == 9000000002fb279c, ra == 9000000003173434 [ 7.524862] Oops[#1]: [ 7.524866] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.3.0+ torvalds#524 [ 7.524870] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 7.524872] pc 9000000002fb279c ra 9000000003173434 tp 90000001001f0000 sp 90000001001f3c00 [ 7.524875] a0 0000000000000000 a1 0000000000000000 a2 0000000000000000 a3 9000000004553e13 [ 7.524878] a4 9000000004553e16 a5 ffffffffffffffff a6 9000000003fd0948 a7 0000000000000030 [ 7.524881] t0 9000000003173434 t1 90000000035e2c00 t2 0000000000000001 t3 00000000fffff2b0 [ 7.524883] t4 0000000000000007 t5 fffffffffffffffe t6 0000000000000000 t7 0000000000000010 [ 7.524886] t8 00000000000000b4 u0 00000001c0840c76 s9 0000000000000000 s0 0000000000000000 [ 7.524889] s1 900000000370c458 s2 0000000000000001 s3 9000000101f81000 s4 9000000101f81038 [ 7.524891] s5 9000000101f813a0 s6 900000000370c398 s7 9000000003eebd18 s8 90000000037c0070 [ 7.524894] ra: 9000000003173434 power_supply_get_battery_info+0xe4/0x710 [ 7.591224] ERA: 9000000002fb279c __dev_fwnode+0x8/0x20 [ 7.853583] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 7.859740] PRMD: 00000004 (PPLV0 +PIE -PWE) [ 7.864073] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 7.868839] ECFG: 00071c1c (LIE=2-4,10-12 VS=7) [ 7.873430] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 7.878884] BADV: 0000000000000278 [ 7.882346] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 7.888056] Modules linked in: [ 7.891088] Process swapper/0 (pid: 1, threadinfo=0000000091357ee8, task=00000000313d98cb) [ 7.899307] Stack : 00000000000000b4 900000000279aca8 0000000000000001 0000000000000000 [ 7.907274] 0000000000000049 0000000000000408 9000000100008c00 90000000035b6370 [ 7.915238] 900000000b801080 90000000029a440c 9000000003eb4680 9000000003eb4680 [ 7.923202] 9000000101f81038 900000000357cdcc 0000000000000001 900000000370c458 [ 7.931166] 9000000101f81000 90000000037c0070 9000000003eebd18 900000000370c398 [ 7.939131] 90000000045f4530 9000000101f81038 0000000000000000 0000000000000001 [ 7.947095] 900000000370c458 9000000101f81000 0000000000000000 9000000003173e64 [ 7.955059] 0000000000000026 9000000003de3880 9000000100562040 900000000357e07c [ 7.963023] 000000000000026f 0000000000000001 90000001001f3d68 fffffffffffffff5 [ 7.970987] 90000000036d2ca8 90000000027429d8 90000000037c0030 0000000000000001 [ 7.978951] ... [ 7.981379] Call Trace: [ 7.981382] [<9000000002fb279c>] __dev_fwnode+0x8/0x20 [ 7.988916] [<9000000003173434>] power_supply_get_battery_info+0xe4/0x710 [ 7.995666] [<9000000003173e64>] __power_supply_register+0x404/0x580 [ 8.001984] [<900000000379d368>] test_power_init+0x6c/0x124 [ 8.007527] [<90000000026e08f8>] do_one_initcall+0x58/0x1ec [ 8.013066] [<9000000003761614>] kernel_init_freeable+0x290/0x310 [ 8.019127] [<90000000035b40e8>] kernel_init+0x24/0x11c [ 8.024324] [<90000000026e2048>] ret_from_kernel_thread+0xc/0xa4 [ 8.030295] [ 8.031769] Code: 4c000020 0015002c 03400000 <28c9e08c> 40000d80 02c06184 4c000020 28ca0084 4c000020 Root cause: psy->dev.parent is NULL in power_supply_get_battery_info(), so change the else branch to be 'else if (psy->dev.parent)' and return -ENOENT if psy->dev.parent is NULL. Fixes: 27a2195 ("power: supply: core: auto-exposure of simple-battery data") Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
After commit 27a2195 ("power: supply: core: auto-exposure of simple-battery data") we call power_supply_get_battery_info() in __power_supply_register(), but it causes test_battery crash with NULL pointer: [ 7.524846] __power_supply_register: Expected proper parent device for 'test_battery' [ 7.524856] CPU 3 Unable to handle kernel paging request at virtual address 0000000000000278, era == 9000000002fb279c, ra == 9000000003173434 [ 7.524862] Oops[#1]: [ 7.524866] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.3.0+ torvalds#524 [ 7.524870] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 7.524872] pc 9000000002fb279c ra 9000000003173434 tp 90000001001f0000 sp 90000001001f3c00 [ 7.524875] a0 0000000000000000 a1 0000000000000000 a2 0000000000000000 a3 9000000004553e13 [ 7.524878] a4 9000000004553e16 a5 ffffffffffffffff a6 9000000003fd0948 a7 0000000000000030 [ 7.524881] t0 9000000003173434 t1 90000000035e2c00 t2 0000000000000001 t3 00000000fffff2b0 [ 7.524883] t4 0000000000000007 t5 fffffffffffffffe t6 0000000000000000 t7 0000000000000010 [ 7.524886] t8 00000000000000b4 u0 00000001c0840c76 s9 0000000000000000 s0 0000000000000000 [ 7.524889] s1 900000000370c458 s2 0000000000000001 s3 9000000101f81000 s4 9000000101f81038 [ 7.524891] s5 9000000101f813a0 s6 900000000370c398 s7 9000000003eebd18 s8 90000000037c0070 [ 7.524894] ra: 9000000003173434 power_supply_get_battery_info+0xe4/0x710 [ 7.591224] ERA: 9000000002fb279c __dev_fwnode+0x8/0x20 [ 7.853583] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 7.859740] PRMD: 00000004 (PPLV0 +PIE -PWE) [ 7.864073] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 7.868839] ECFG: 00071c1c (LIE=2-4,10-12 VS=7) [ 7.873430] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 7.878884] BADV: 0000000000000278 [ 7.882346] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 7.888056] Modules linked in: [ 7.891088] Process swapper/0 (pid: 1, threadinfo=0000000091357ee8, task=00000000313d98cb) [ 7.899307] Stack : 00000000000000b4 900000000279aca8 0000000000000001 0000000000000000 [ 7.907274] 0000000000000049 0000000000000408 9000000100008c00 90000000035b6370 [ 7.915238] 900000000b801080 90000000029a440c 9000000003eb4680 9000000003eb4680 [ 7.923202] 9000000101f81038 900000000357cdcc 0000000000000001 900000000370c458 [ 7.931166] 9000000101f81000 90000000037c0070 9000000003eebd18 900000000370c398 [ 7.939131] 90000000045f4530 9000000101f81038 0000000000000000 0000000000000001 [ 7.947095] 900000000370c458 9000000101f81000 0000000000000000 9000000003173e64 [ 7.955059] 0000000000000026 9000000003de3880 9000000100562040 900000000357e07c [ 7.963023] 000000000000026f 0000000000000001 90000001001f3d68 fffffffffffffff5 [ 7.970987] 90000000036d2ca8 90000000027429d8 90000000037c0030 0000000000000001 [ 7.978951] ... [ 7.981379] Call Trace: [ 7.981382] [<9000000002fb279c>] __dev_fwnode+0x8/0x20 [ 7.988916] [<9000000003173434>] power_supply_get_battery_info+0xe4/0x710 [ 7.995666] [<9000000003173e64>] __power_supply_register+0x404/0x580 [ 8.001984] [<900000000379d368>] test_power_init+0x6c/0x124 [ 8.007527] [<90000000026e08f8>] do_one_initcall+0x58/0x1ec [ 8.013066] [<9000000003761614>] kernel_init_freeable+0x290/0x310 [ 8.019127] [<90000000035b40e8>] kernel_init+0x24/0x11c [ 8.024324] [<90000000026e2048>] ret_from_kernel_thread+0xc/0xa4 [ 8.030295] [ 8.031769] Code: 4c000020 0015002c 03400000 <28c9e08c> 40000d80 02c06184 4c000020 28ca0084 4c000020 Root cause: psy->dev.parent is NULL in power_supply_get_battery_info(), so change the else branch to be 'else if (psy->dev.parent)' and return -ENOENT if psy->dev.parent is NULL. Fixes: 27a2195 ("power: supply: core: auto-exposure of simple-battery data") Signed-off-by: Huacai Chen <chenhuacai@loongson.cn> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
After commit 27a2195 ("power: supply: core: auto-exposure of simple-battery data") we call power_supply_get_battery_info() in __power_supply_register(), but it causes test_battery crash with NULL pointer: [ 7.524846] __power_supply_register: Expected proper parent device for 'test_battery' [ 7.524856] CPU 3 Unable to handle kernel paging request at virtual address 0000000000000278, era == 9000000002fb279c, ra == 9000000003173434 [ 7.524862] Oops[#1]: [ 7.524866] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.3.0+ torvalds#524 [ 7.524870] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 7.524872] pc 9000000002fb279c ra 9000000003173434 tp 90000001001f0000 sp 90000001001f3c00 [ 7.524875] a0 0000000000000000 a1 0000000000000000 a2 0000000000000000 a3 9000000004553e13 [ 7.524878] a4 9000000004553e16 a5 ffffffffffffffff a6 9000000003fd0948 a7 0000000000000030 [ 7.524881] t0 9000000003173434 t1 90000000035e2c00 t2 0000000000000001 t3 00000000fffff2b0 [ 7.524883] t4 0000000000000007 t5 fffffffffffffffe t6 0000000000000000 t7 0000000000000010 [ 7.524886] t8 00000000000000b4 u0 00000001c0840c76 s9 0000000000000000 s0 0000000000000000 [ 7.524889] s1 900000000370c458 s2 0000000000000001 s3 9000000101f81000 s4 9000000101f81038 [ 7.524891] s5 9000000101f813a0 s6 900000000370c398 s7 9000000003eebd18 s8 90000000037c0070 [ 7.524894] ra: 9000000003173434 power_supply_get_battery_info+0xe4/0x710 [ 7.591224] ERA: 9000000002fb279c __dev_fwnode+0x8/0x20 [ 7.853583] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 7.859740] PRMD: 00000004 (PPLV0 +PIE -PWE) [ 7.864073] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 7.868839] ECFG: 00071c1c (LIE=2-4,10-12 VS=7) [ 7.873430] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 7.878884] BADV: 0000000000000278 [ 7.882346] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 7.888056] Modules linked in: [ 7.891088] Process swapper/0 (pid: 1, threadinfo=0000000091357ee8, task=00000000313d98cb) [ 7.899307] Stack : 00000000000000b4 900000000279aca8 0000000000000001 0000000000000000 [ 7.907274] 0000000000000049 0000000000000408 9000000100008c00 90000000035b6370 [ 7.915238] 900000000b801080 90000000029a440c 9000000003eb4680 9000000003eb4680 [ 7.923202] 9000000101f81038 900000000357cdcc 0000000000000001 900000000370c458 [ 7.931166] 9000000101f81000 90000000037c0070 9000000003eebd18 900000000370c398 [ 7.939131] 90000000045f4530 9000000101f81038 0000000000000000 0000000000000001 [ 7.947095] 900000000370c458 9000000101f81000 0000000000000000 9000000003173e64 [ 7.955059] 0000000000000026 9000000003de3880 9000000100562040 900000000357e07c [ 7.963023] 000000000000026f 0000000000000001 90000001001f3d68 fffffffffffffff5 [ 7.970987] 90000000036d2ca8 90000000027429d8 90000000037c0030 0000000000000001 [ 7.978951] ... [ 7.981379] Call Trace: [ 7.981382] [<9000000002fb279c>] __dev_fwnode+0x8/0x20 [ 7.988916] [<9000000003173434>] power_supply_get_battery_info+0xe4/0x710 [ 7.995666] [<9000000003173e64>] __power_supply_register+0x404/0x580 [ 8.001984] [<900000000379d368>] test_power_init+0x6c/0x124 [ 8.007527] [<90000000026e08f8>] do_one_initcall+0x58/0x1ec [ 8.013066] [<9000000003761614>] kernel_init_freeable+0x290/0x310 [ 8.019127] [<90000000035b40e8>] kernel_init+0x24/0x11c [ 8.024324] [<90000000026e2048>] ret_from_kernel_thread+0xc/0xa4 [ 8.030295] [ 8.031769] Code: 4c000020 0015002c 03400000 <28c9e08c> 40000d80 02c06184 4c000020 28ca0084 4c000020 Root cause: psy->dev.parent is NULL in power_supply_get_battery_info(), so change the else branch to be 'else if (psy->dev.parent)' and return -ENOENT if psy->dev.parent is NULL. Fixes: 27a2195 ("power: supply: core: auto-exposure of simple-battery data") Signed-off-by: Huacai Chen <chenhuacai@loongson.cn> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
After commit 27a2195 ("power: supply: core: auto-exposure of simple-battery data") we call power_supply_get_battery_info() in __power_supply_register(), but it causes test_battery crash with NULL pointer: [ 7.524846] __power_supply_register: Expected proper parent device for 'test_battery' [ 7.524856] CPU 3 Unable to handle kernel paging request at virtual address 0000000000000278, era == 9000000002fb279c, ra == 9000000003173434 [ 7.524862] Oops[kdave#1]: [ 7.524866] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.3.0+ torvalds#524 [ 7.524870] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 7.524872] pc 9000000002fb279c ra 9000000003173434 tp 90000001001f0000 sp 90000001001f3c00 [ 7.524875] a0 0000000000000000 a1 0000000000000000 a2 0000000000000000 a3 9000000004553e13 [ 7.524878] a4 9000000004553e16 a5 ffffffffffffffff a6 9000000003fd0948 a7 0000000000000030 [ 7.524881] t0 9000000003173434 t1 90000000035e2c00 t2 0000000000000001 t3 00000000fffff2b0 [ 7.524883] t4 0000000000000007 t5 fffffffffffffffe t6 0000000000000000 t7 0000000000000010 [ 7.524886] t8 00000000000000b4 u0 00000001c0840c76 s9 0000000000000000 s0 0000000000000000 [ 7.524889] s1 900000000370c458 s2 0000000000000001 s3 9000000101f81000 s4 9000000101f81038 [ 7.524891] s5 9000000101f813a0 s6 900000000370c398 s7 9000000003eebd18 s8 90000000037c0070 [ 7.524894] ra: 9000000003173434 power_supply_get_battery_info+0xe4/0x710 [ 7.591224] ERA: 9000000002fb279c __dev_fwnode+0x8/0x20 [ 7.853583] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 7.859740] PRMD: 00000004 (PPLV0 +PIE -PWE) [ 7.864073] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 7.868839] ECFG: 00071c1c (LIE=2-4,10-12 VS=7) [ 7.873430] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 7.878884] BADV: 0000000000000278 [ 7.882346] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 7.888056] Modules linked in: [ 7.891088] Process swapper/0 (pid: 1, threadinfo=0000000091357ee8, task=00000000313d98cb) [ 7.899307] Stack : 00000000000000b4 900000000279aca8 0000000000000001 0000000000000000 [ 7.907274] 0000000000000049 0000000000000408 9000000100008c00 90000000035b6370 [ 7.915238] 900000000b801080 90000000029a440c 9000000003eb4680 9000000003eb4680 [ 7.923202] 9000000101f81038 900000000357cdcc 0000000000000001 900000000370c458 [ 7.931166] 9000000101f81000 90000000037c0070 9000000003eebd18 900000000370c398 [ 7.939131] 90000000045f4530 9000000101f81038 0000000000000000 0000000000000001 [ 7.947095] 900000000370c458 9000000101f81000 0000000000000000 9000000003173e64 [ 7.955059] 0000000000000026 9000000003de3880 9000000100562040 900000000357e07c [ 7.963023] 000000000000026f 0000000000000001 90000001001f3d68 fffffffffffffff5 [ 7.970987] 90000000036d2ca8 90000000027429d8 90000000037c0030 0000000000000001 [ 7.978951] ... [ 7.981379] Call Trace: [ 7.981382] [<9000000002fb279c>] __dev_fwnode+0x8/0x20 [ 7.988916] [<9000000003173434>] power_supply_get_battery_info+0xe4/0x710 [ 7.995666] [<9000000003173e64>] __power_supply_register+0x404/0x580 [ 8.001984] [<900000000379d368>] test_power_init+0x6c/0x124 [ 8.007527] [<90000000026e08f8>] do_one_initcall+0x58/0x1ec [ 8.013066] [<9000000003761614>] kernel_init_freeable+0x290/0x310 [ 8.019127] [<90000000035b40e8>] kernel_init+0x24/0x11c [ 8.024324] [<90000000026e2048>] ret_from_kernel_thread+0xc/0xa4 [ 8.030295] [ 8.031769] Code: 4c000020 0015002c 03400000 <28c9e08c> 40000d80 02c06184 4c000020 28ca0084 4c000020 Root cause: psy->dev.parent is NULL in power_supply_get_battery_info(), so change the else branch to be 'else if (psy->dev.parent)' and return -ENOENT if psy->dev.parent is NULL. Fixes: 27a2195 ("power: supply: core: auto-exposure of simple-battery data") Signed-off-by: Huacai Chen <chenhuacai@loongson.cn> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Updated xz.txt file to remove two conservative colons.
Example:: changed to Example: