Skip to content
#

wavelet-analysis

Here are 53 public repositories matching this topic...

JWave

A Discrete Fourier Transform (DFT), a Fast Wavelet Transform (FWT), and a Wavelet Packet Transform (WPT) algorithm in 1-D, 2-D, and 3-D using normalized orthogonal (orthonormal) Haar, Coiflet, Daubechie, Legendre and normalized biorthognal wavelets in Java.

  • Updated May 3, 2024
  • Java

A sharing of the learning process of mathematical modeling 数学建模常用工具模型算法分享:数学建模竞赛优秀论文,数学建模常用算法模型,LaTeX论文模板,SPSS工具分享。

  • Updated Feb 20, 2023
  • Jupyter Notebook

Python codes “Jupyter notebooks” for the paper entitled "A Hybrid Method for Condition Monitoring and Fault Diagnosis of Rolling Bearings With Low System Delay, IEEE Trans. on Instrumentation and Measurement, Aug. 2022. Techniques used: Wavelet Packet Transform (WPT) & Fast Fourier Transform (FFT). Application: vibration-based fault diagnosis.

  • Updated May 16, 2024
  • Jupyter Notebook

通过反向传播算法实现神经网络和小波神经网络。Implement neural network and wavelet neural network through back-propagation algorithm. Реализация нейронных сетей и вейвлет-нейронных сетей с помощью метода обратного распространения ошибки.

  • Updated Jun 26, 2019
  • Jupyter Notebook

A refactored port and code rebuilt of JWave - Discrete Fourier Transform (DFT), Fast Wavelet Transform (FWT), Wavelet Packet Transform (WPT), some Shifting Wavelet Transform (SWT) by using orthogonal (orthonormal) wavelets like Haar, Daubechie, Coiflet, and other normalized bi-orthogonal wavelets.

  • Updated Dec 22, 2024
  • C#

Improve this page

Add a description, image, and links to the wavelet-analysis topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the wavelet-analysis topic, visit your repo's landing page and select "manage topics."

Learn more