Learned the fundamentals and applications in ML: Intro to Prob. & Linear algebra, Decision Theory, MLE & BE, Linear Model, Linear Discriminant function, Perceptron, FLD, PCA, Non-parametric Learning, Clustering, EM, GMM, EM and Latent Variable Model, Probabilistic Graphical Model, Bayesian Network, Neural Network, SVM, Decision Tree and Boosting
-
Updated
Jan 20, 2024 - Jupyter Notebook