Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[pull] master from ggerganov:master #170

Closed
wants to merge 8 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion .devops/cpu.Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,25 @@ ARG UBUNTU_VERSION=22.04

FROM ubuntu:$UBUNTU_VERSION AS build

ARG TARGETARCH

ARG GGML_CPU_ARM_ARCH=armv8-a

RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev

WORKDIR /app

COPY . .

RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \
fi && \
cmake --build build -j $(nproc)

RUN mkdir -p /app/lib && \
Expand Down
23 changes: 17 additions & 6 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -916,10 +916,10 @@ jobs:
shell: cmd
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" \
-DLLAMA_BUILD_SERVER=ON \
-DGGML_NATIVE=OFF \
-DGGML_CUDA=ON \
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
Expand Down Expand Up @@ -1073,7 +1073,12 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}

windows-latest-cmake-hip-release:
Expand Down Expand Up @@ -1111,7 +1116,13 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
Expand Down
2 changes: 2 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,8 @@ endif()
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()

#
Expand Down
22 changes: 11 additions & 11 deletions examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1427,16 +1427,16 @@ struct server_queue {
int post(server_task task, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
GGML_ASSERT(task.id != -1);
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
condition_tasks.notify_one();
return task.id;
}
Expand All @@ -1448,16 +1448,16 @@ struct server_queue {
if (task.id == -1) {
task.id = id++;
}
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
}
condition_tasks.notify_one();
return 0;
Expand Down Expand Up @@ -1554,10 +1554,10 @@ struct server_queue {
}

private:
void cleanup_pending_task(int id_task) {
void cleanup_pending_task(int id_target) {
// no need lock because this is called exclusively by post()
auto rm_func = [id_task](const server_task & task) {
return task.id_target == id_task;
auto rm_func = [id_target](const server_task & task) {
return task.id_target == id_target;
};
queue_tasks.erase(
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
Expand Down
1 change: 1 addition & 0 deletions ggml/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,7 @@ option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp on

option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
Expand Down
4 changes: 4 additions & 0 deletions ggml/src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,10 @@ typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16

#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))

#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
Expand Down
14 changes: 7 additions & 7 deletions ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;

#if !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
Expand All @@ -164,7 +164,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)
info.devices[id].vmm = !!device_vmm;

cudaDeviceProp prop;
Expand Down Expand Up @@ -300,7 +300,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
};

// pool with virtual memory
#if !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB

Expand Down Expand Up @@ -408,14 +408,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
}
};
#endif // !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)

std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif // !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}

Expand Down Expand Up @@ -3250,7 +3250,7 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
features.push_back({ "FORCE_CUBLAS", "1" });
#endif

#ifdef GGML_CUDA_NO_VMM
#ifndef GGML_USE_VMM
features.push_back({ "NO_VMM", "1" });
#endif

Expand Down
4 changes: 2 additions & 2 deletions ggml/src/ggml-hip/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -96,8 +96,8 @@ if (GGML_HIP_GRAPHS)
add_compile_definitions(GGML_HIP_GRAPHS)
endif()

if (GGML_CUDA_NO_VMM)
add_compile_definitions(GGML_CUDA_NO_VMM)
if (GGML_HIP_NO_VMM)
add_compile_definitions(GGML_HIP_NO_VMM)
endif()

if (CXX_IS_HIPCC)
Expand Down
64 changes: 41 additions & 23 deletions ggml/src/ggml-vulkan/ggml-vulkan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,10 @@ struct vk_pipeline_struct {
uint32_t parameter_count;
std::array<uint32_t, 3> wg_denoms;
uint32_t align;
// set to true to request the pipeline is compiled after the dryrun
bool needed {};
// set to true when the shader has been compiled
bool compiled {};
};

typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
Expand Down Expand Up @@ -186,16 +190,19 @@ struct vk_device_struct {
bool mul_mat_id_m;
bool mul_mat_id_s;

vk_matmul_pipeline pipeline_matmul_f32;
vk_matmul_pipeline pipeline_matmul_f32_f16;
// set to true to indicate that some shaders need to be compiled after the dryrun
bool need_compiles {};

vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
vk_pipeline pipeline_matmul_split_k_reduce;

vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];

vk_matmul_pipeline pipeline_matmul_id_f32;
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;

Expand Down Expand Up @@ -776,13 +783,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT

pipeline = std::make_shared<vk_pipeline_struct>();
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;

vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);

Expand Down Expand Up @@ -865,6 +865,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
}

pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
pipeline->compiled = true;

{
std::lock_guard<std::mutex> guard(device->mutex);
Expand All @@ -875,12 +876,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
std::lock_guard<std::mutex> guard(compile_count_mutex);
assert(compile_count > 0);
compile_count--;

// "Progress bar" for shader compiles
static uint32_t total_compile_count = 0;
if ((total_compile_count++ % 10) == 0) {
std::cerr << ".";
}
}
compile_count_cond.notify_all();
}
Expand All @@ -906,6 +901,10 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline)
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
if (!pipeline->compiled) {
pipeline->needed = true;
device->need_compiles = true;
}
}

static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
Expand Down Expand Up @@ -1388,8 +1387,6 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
static void ggml_vk_load_shaders(vk_device& device) {
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");

std::cerr << "ggml_vulkan: Compiling shaders";

// some shaders have a minimum subgroup size
const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u);
Expand Down Expand Up @@ -1527,15 +1524,33 @@ static void ggml_vk_load_shaders(vk_device& device) {
}
}

device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();

device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
if (!device->pipeline_matmul_f32) {
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_f32_f16) {
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}

std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {

if (!pipeline) {
pipeline = std::make_shared<vk_pipeline_struct>();
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;
}

if (!pipeline->needed || pipeline->compiled) {
return;
}
{
// wait until fewer than N compiles are in progress
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
Expand Down Expand Up @@ -2050,7 +2065,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (auto &c : compiles) {
c.wait();
}
std::cerr << "Done!" << std::endl;
device->need_compiles = false;
}

static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props);
Expand Down Expand Up @@ -7656,6 +7671,9 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_vk_preallocate_buffers(ctx);
ggml_pipeline_allocate_descriptor_sets(ctx->device);

Expand Down
Loading